Subject Name: Applied Physics	WINTER-18 EXAMINATION	

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
1.	a)	Attempt any nine of the following: Define angular displacement. State its S.I. unit. Definition S.I.unit Angular displacement:- Angular displacement is defined as the angle traced by radius vector . OR Angular displacement is defined as the angle subtended at the centre by path travelled. S.I.unit :- radian (rad) Define momentum. State its S.I. unit. Definition S.I.unit Momentum:- The product of mass and velocity is called as momentum. S.I.unit:- $\mathrm{Kg} \mathrm{m} / \mathrm{s}$ OR N.s A body of mass 200 kg changes its velocity from $40 \mathrm{~km} / \mathrm{hr}$ to $10 \mathrm{~km} / \mathrm{hr}$. Calculate the impulse acting on body. Formula Answer with unit Given:- $\mathrm{m}=200 \mathrm{~kg}$ $\begin{aligned} & \mathrm{u}=40 \mathrm{~km} / \mathrm{hr}=(40 \times 1000) /(60 \times 60) \\ & \mathrm{v}=10 \mathrm{~km} / \mathrm{hr}=(10 \times 1000) /(60 \times 60)=2.11 \mathrm{~m} / \mathrm{s} \\ & \hline \end{aligned}$ we have, $\begin{aligned} \text { Impulse } & =\text { Change in Momentum } \\ & =m v-\mathrm{mu} \\ & =(200 \times 2.78)-(200 \times 11.11) \\ \text { Impulse } & =\mathbf{1 6 6 6} \mathbf{~ k g ~ m} / \mathbf{s} \text { or } \mathbf{N s} \end{aligned}$	$\begin{aligned} & \hline \mathbf{1 8} \\ & \mathbf{2} \\ & 1 \\ & 1 \end{aligned}$ 2 1 1 2 1 1

WINTER - 18 EXAMINATION

Subject Name: Applied Physics
Model Answer Subject Code:
17202

Q. No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
1.	d)	Define angle of projection and range of projectile. Each definition Angle of projection: - It is defined as angle made by the velocity of projection with the horizontal at the original point. Range of projectile: - The total horizontal distance covered by a projectile is called as range. State properties of ultrasonic waves. Any two Property i) Frequency of these sound waves is more than 20 kHz ii) Shorter wavelength iii) They carry high amount of sound energy iv) The speed of propagation of ultrasonic waves increases with increase in frequency v) They show negligible diffraction vi) Ultrasonic waves travel over long distance without considerable loss vii) Ultrasonic waves undergo reflection and refraction at the separation of two media viii) If it passed through fluid, then temperature of the fluid increases. ix) Travel with constant speed through a homogeneous medium. x) Posses certain vibrations which are used as good massage action in case of muscular pain. Define neutral temperature, inversion temperature. Each definition Neutral temperature:- In thermocouple the temperature at which the emf is maximum is called neutral temperature. Inversion Temperature: - In thermocouple the temperature at which the emf becomes zero and changes its sign (becomes negative) is call inversion temperature. State Joules law. Give its mathematical equation. Statement Equation Joules law : It state that the amount of heat generated (H) due to the flow of electric current through a resistance is directly proportional to 1) Square of the current $\left(\mathrm{I}^{2}\right)$ 2) Resistance (R) 3) Time for which current flows (t) $\mathrm{H}=\left(\frac{1}{J}\right) \mathrm{I}^{2} \mathrm{Rt}$	2 2 2 1 2 1 1

WINTER - 18 EXAMINATION

Subject Name: Applied Physics
Model Answer
Subject Code: 17202

$\begin{aligned} & \mathrm{Q} . \\ & \mathrm{No.} \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
1.	h)	State Planck's Hypothesis. Statement Planck's Hypothesis: Planck proposed the quantum theory for explanation of energy distribution in a black body radiation. According to this theory energy is not emitted or absorbed continuously but in a discrete units or packets called photon or quanta. The photons are electrically neutral and traveled with speed of light i.e. the radiation considers as shower of photons. The energy E associated with photon is directly proportional to frequency of light.	2
	i)	An accelerated electron emits a quantum of radiation with frequency $8 \times 10^{18} \mathrm{~Hz}$. Calculate energy of electron. Given $h=6.625 \times 10^{-34} \mathrm{Js}$. Formula Answer with unit. Given:- $\mathrm{h}=6.625 \times 10^{-34} \mathrm{Js}, v=8 \times 10^{18} \mathrm{~Hz}$. To find : $\mathrm{E}=$? $\begin{aligned} & \mathrm{E}=\mathrm{h} v=\left(6.625 \times 10^{-34}\right) \times\left(8 \times 10^{18}\right) \\ & \mathbf{E}=\mathbf{5 3} \times \mathbf{1 0}^{-\mathbf{1 6}} \mathbf{J} \end{aligned}$	2 1 1
	j)	State principle of production of X-rays. Principle Principle: When fast moving electrons are suddenly stopped by a solid target then X-rays are produced.	$\begin{aligned} & \mathbf{2} \\ & 2 \end{aligned}$
	k)	State any two medical applications of X-ray. Medical Application (Any two) Medical Application of X- Rays: i) X - Rays are used in surgery to detect bone fractured. ii) X- Rays are used to cure skin diseases and destroy tumours. iii) X - Rays are used to cure diseases like cancer. iv) X - Rays are used to detect bullets position inside the body.	$\begin{aligned} & \mathbf{2} \\ & 2 \end{aligned}$
	1)	Give full form of LASER. Full form LASER: Light Amplification by Stimulated Emission of Radiation.	$\begin{aligned} & \mathbf{2} \\ & 2 \end{aligned}$

WINTER - 18 EXAMINATION

Subject Name: Applied Physics
Model Answer
Subject Code:
17202

WINTER - 18 EXAMINATION

Subject Name: Applied Physics
Model Answer
Subject Code:
17202

$\begin{array}{\|l} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
2.	c)	Explain production of ultrasonic waves using piezoelectric method. Diagram with label Principle Working Principle: When the electric field is applied across the crystal its dimensions changes and when alternating PD is applied across crystal then the crystal sets into elastic vibrations Working: A chip of piezo-electric crystal like quartz is placed between two plates as shown in figure. A suitable oscillator is connected across it. The electric oscillations along the electric axis produce mechanical vibrations along the mechanical axis. The frequency of oscillator is increased. At a particular frequency of oscillator, the oscillator frequency becomes equal to natural frequency of vibration of crystal. Then the crystal sets into resonance vibration and ultrasonic waves are produced.	$\begin{aligned} & \hline 4 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$
	d)	With neat labeled diagrams and procedural steps, explain LPT method. Principle Diagram Procedure Principle: It works on the principle of capillarity. Experimental Procedure: 1. Surface Preparation: Initially the surface of the specimen is cleaned. Because the presence of flakes, dirt, grease etc on the surface of work piece prevents penetrant to be slip into the cracks. This gives wrong information.	$\begin{aligned} & 4 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$

WINTER - 18 EXAMINATION

Subject Name: Applied Physics
Model Answer
Subject Code: 17202

$\begin{array}{\|l} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
2.	d) ${ }^{\text {d }}$ (${ }^{\text {a }}$	2. Application of Dye penetrant: Suitable fluorescent dye is mixed in penetrant so that its viscosity remains low. This dye penetrant is applied evenly on specimen. Due to capillary action the penetrant goes into the surface open discontinuities. It takes some time. In general case this 'dwell time' is 20-30 minutes. 3. Excess penetrant removal: After dwell time is over, the excess penetrant is removed from the surface carefully 4.Application of developer: A thin layer of developer is applied over the surface. The role of developer is to pull the trapped penetrant out of the crack this provides good visibility of crack. 5.Inspection \& evalution of defects: Surface of the specimen is seen under white light or ultraviolet or laser light. The crack can be visualized under light. 6. Post cleaning: After inspection the surface of the specimen is cleaned \& the specimen can be used for its intended purpose. State advantages of NDT. Any four advantages The advantages of non-destructive testing 1. 100% examination of material or production is possible. 2. NDT methods can be automated to lower their costs.	$\begin{aligned} & 4 \\ & 4 \end{aligned}$

WINTER - 18 EXAMINATION

Subject Name: Applied Physics
Model Answer
Subject Code:
17202

Q. No.	Sub Q. N.		Answers	
3.	f)	3. Testing is possible on shop, floor because of portable equipments; this controls the quality of further production. 4. Permanent record of testing can be made during the testing process. 5. The destructed parts can be separated in the early stages of manufacturing. This saves the time \& production cost. 6. Higher accuracy, reliability \& repeatability in the test result can be obtained. 7. Rapid inspection of each \& every component is possible. Any other relevant advantage. A body is allowed to fall from the terrace of a building 200 m high. After what time will it reach the ground, What will be its velocity at that time? Two formulae with substitution Two answers with units $\begin{aligned} & \text { Given : } \\ & u=0 \\ & s=200 \mathrm{~m} \\ & \mathrm{a}=\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$ i) ii) $\begin{aligned} & \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as} \\ & \mathrm{v}^{2}=0+2 \times 9.8 \times 200 \\ & \mathrm{v}^{2}=3920 \\ & \mathbf{v}=\mathbf{6 2 . 6 1 ~ m} / \mathbf{s} \\ & \mathrm{a}=\mathrm{v}-\mathrm{u} / \mathrm{t} \\ & \mathrm{t}=\mathrm{v}-\mathrm{u} / \mathrm{a}=62.60-0 / 9.8 \\ & \mathbf{t}=\mathbf{6 . 3 8} \mathbf{s} \end{aligned}$ Attempt any four of the following: Distinguish between Seebeck effect and Peltier effect . Any Four points		2
	a)			16

WINTER - 18 EXAMINATION

Subject Name: Applied Physics
Model Answer
Subject Code:
17202

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
3.		Define thermo emf. State the factor on which it depends. Definition Three factors Thermo emf: When two dissimilar metals are joined to form two different junctions and if temperature difference is maintained between them the electromotive force (e.m.f) developed between them is called thermo emf. Factors 1) Metals used 2) Length of the metal wires 3) Temperature difference between two junctions. The energy of photon is $5.28 \times 10^{-19} \mathrm{~J}$. Calculate frequency and wavelength. (Given $h=$ $6.625 \times 10^{-34} \mathrm{~J}-\mathrm{s}, \mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$) Two formulae with substitution Two answers with units Given:- $\quad \mathrm{E}=5.28 \times 10^{-19} \mathrm{~J}, \quad \mathrm{~h}=6.625 \times 10^{-34} \mathrm{~J}-\mathrm{s}, \quad \mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ $v=? \quad \lambda=?$ We have, $\mathrm{E}=\mathrm{h} v$ $v=\mathrm{E} / \mathrm{h}=5.28 \times 10^{-19} / 6.625 \times 10^{-34}$ $v=0.797 \times 10^{15} \mathbf{H z}$ and $\begin{aligned} \mathrm{E} & =\mathrm{hc} / \lambda \\ \lambda & =\mathrm{hc} / \mathrm{E}=\left(6.625 \times 10^{-34}\right) \times\left(3 \times 10^{8}\right) /\left(5.28 \times 10^{-19}\right) \\ \lambda & =3764 \times 10^{-10} \mathrm{~m} \\ \lambda & =\mathbf{3 7 6 4} \mathbf{A}^{0} \end{aligned}$ State any four properties of X-ray. Any four properties i. They are electromagnetic waves of very short wavelength ii. They travel with speed of light. iii. They affect photographic plates. iv. They produce fluorescence in many substances. v. They can be reflected or refracted under certain conditions. vi. They are not deflected by magnetic or electric field. vii. They have high penetrating power. viii. They produce photoelectric effect. ix. They are invisible to eyes. x. X-ray kills some form of animal cell.	$\begin{aligned} & \hline \mathbf{4} \\ & 1 \\ & 3 \end{aligned}$ 4 2 2 4 4

WINTER - 18 EXAMINATION

Subject Name: Applied Physics
Model Answer
Subject Code:
17202

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { Q. } \\
& \text { No. }
\end{aligned}
$$ \& $$
\begin{aligned}
& \hline \text { Sub } \\
& \text { Q. N. }
\end{aligned}
$$ \& Answers \& Marking Scheme

\hline 3. \& e)

f) \& \begin{tabular}{l}
State properties of LASER.

Any four properties

Properties

i) The light is coherent: The light with waves, all exactly in same phase.

ii) The light is monochromatic: The light whose waves all have the same frequency or wavelength.

iii) The light is unidirectional: The light produces sharp focus.

iv) The beam is extremely intense: The light has extreme brightness.

A body starting from rest is moving with uniform acceleration. If it gains a velocity of $72 \mathrm{~km} / \mathrm{hr}$ in 10 seconds. Find it's acceleration, total distance covered in 10 second and distance covered in $6^{\text {th }}$ second.

Each formula

Substitution

Each answer with unit

Given:- $u=0$
$$
\mathrm{v}=72 \mathrm{~km} / \mathrm{hr}=72 \times 1000 /(60 \times 60)=20 \mathrm{~m} / \mathrm{s}
$$
$$
\mathrm{t}=10 \mathrm{sec}
$$

$\mathrm{a}=$?

$\mathrm{s}=$?

$\mathrm{s}^{6 \mathrm{th}}=$?

we have, $\quad v=u+a t$

$\mathrm{a}=(\mathrm{v}-\mathrm{u}) / \mathrm{t}=(20-0) / 10$

$\mathrm{a}=\mathbf{2 \mathrm { m }} / \mathrm{s}^{2}$

and also ,
$$
\begin{aligned}
\mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}^{2} \\
\mathrm{~s}=(0 \times 10)+(1 / 2)(2 \times 100) \\
\mathrm{s}=\mathbf{1 0 0} \mathbf{~ m} \\
\mathrm{s}^{\mathrm{nth}}=\mathrm{u}+\mathrm{a} / 2(2 \mathrm{n}-1) \\
\mathrm{s}^{6 \mathrm{th}}=0+(2 / 2)(2 \times 6-1) \\
\mathbf{s}^{6 \mathrm{th}}=\mathbf{1 1 ~ m}
\end{aligned}
$$

 \&

4

4

$$
\begin{aligned}
& 1 / 2 \\
& 1 \\
& 1 / 2
\end{aligned}
$$

\end{tabular}

\hline
\end{tabular}

