WINTER- 16 EXAMINATION
 Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{aligned}
& \hline \text { Q. } \\
& \text { No. }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { Sub } \\
& \text { Q.N. }
\end{aligned}
$$ \& Answer \& Marking Scheme

\hline 1. \& a)

b) \& \begin{tabular}{l}
Attempt any NINE of the Following:

A car moving with an initial speed of $54 \mathrm{~km} / \mathrm{hr}$ decelerates to $25 \mathrm{~km} / \mathrm{hr}$ in 9 seconds Calculate the SOL deceleration.

Formula.

Answer with unit.

Given:
$$
\begin{aligned}
\mathrm{u} & =54 \mathrm{~km} / \mathrm{hr}=54 \times 1000 / 60 \times 60=15 \mathrm{~m} / \mathrm{s} \\
\mathrm{v} & =25 \mathrm{~km} / \mathrm{hr}=25 \times 1000 / 60 \times 60=6.94 \mathrm{~m} / \mathrm{s}, \mathrm{t}=9 \mathrm{sec}, \mathrm{a}=?
\end{aligned}
$$

We have,
$$
\begin{aligned}
& v=u+a t \\
& a=v-u / t \\
& a=6.94-15 / 9 \\
& \mathbf{a}=\mathbf{- 0 . 8 9 5 5} \mathbf{~ m} / \mathbf{s}^{2}
\end{aligned}
$$

State work energy principle.

Statement :The work done by a system of forces acting on a body between any two points is equal to the change in kinetic energy of a body between the same two points

 \&

$$
\begin{gathered}
18 \\
2
\end{gathered}
$$

1

1

2
\end{tabular}

\hline
\end{tabular}

WINTER- 16 EXAMINATION
 Model Answer
 Subject Code:
 17202

Q. No.	Sub Q.N.	Answer	Marking Scheme
1.	c)	State any two application of centrifugal force. Each application Application of centrifugal force: 1) Banking of curved road. 2) Centrifuge machine. 3) Drive in a washing machine. 4) Centrifugal governor. 5) Centrifugal pump. 6) Centrifugal Blower. State any two properties of ultrasonic waves. Each Property. i) Frequency of these sound waves is more than 20kHz. ii) It has shorter wavelength. iii) They carry high amount of sound energy. iv) The speed of propagation of ultrasonic waves increases with increase in frequency. v) They show negligible diffraction. vi) Ultrasonic waves travel over long distance without considerable loss. vii) Ultrasonic waves undergo reflection and refraction at the separation of two media. viii) If it passed through fluid, then temperature of the fluid increases. ix) They travel with constant speed through a homogeneous medium. x) They possess certain vibrations which are used as good massage action in case of muscular pain.	1
e)State any two limitations of NDT methods. Each limitation. Limitations of NDT 1) Qualitative testing is possible; however, quantitative testing is difficult. 2) Cost of equipment is high and testing charges are more as compared to destructive testing. 3) Trained and certified persons are authorized to conduct the test (level I,II and III) as per American Society for Non-destructive testing(ANST) 4) NDT interpretation are relative .one should know the standard results first. 5) Minimum two methods for complete examination of the material are required. with only One method, testing for all parameters of materials is not possible.			

WINTER- 16 EXAMINATION
 Model Answer
 Subject Code:

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{array}{|l|}
\hline \text { Q. } \\
\text { No. }
\end{array}
$$ \& $$
\begin{aligned}
& \hline \text { Sub } \\
& \text { Q.N. }
\end{aligned}
$$ \& Answer \& Marking Scheme

\hline 1. \& f)
g)

h) \& \begin{tabular}{l}
State any two characteristics of thermocouple.

Each characteristic.

1) Measurement of thermoelectric e.m.f

2) The temperature difference between the two junctions.

3) Pair of metal used in thermocouple.

4) It is selected as per the requirement of the system whose temperature is to be determined.

Define:(i) Neutral temperature (ii) Inversion temperature

Each definition.

(i) Neutral temperature : The temperature at which the e.m.f is maximum is called neutral temperature.

(ii) Inversion temperature: The temperature at which the e.m.f becomes zero is called inversion temperature

The energy of photoelectron is 2.8 eV .Calculate its wavelength (planks constant, $h=6.625 \times 10^{-34} \mathrm{~J}$-sec; speed of light, $\mathrm{c}=\mathbf{3 \times 1 0} \mathbf{~ m} / \mathrm{s}$)

Formula and conversion.

Answer with unit.

Given : $\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J}-\mathrm{sec}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$,
$$
\begin{aligned}
& \mathrm{E}=2.8 \mathrm{eV}=2.8 \times 1.6 \times 10^{-19}=4.48 \times 10^{-19} \mathrm{~J} \\
& \mathrm{E}=\mathrm{h} \mathrm{v} \quad \text { But, } v=\mathrm{c} / \lambda \\
& \mathrm{E}=\mathrm{h} \mathrm{c} / \lambda \\
& \lambda=\mathrm{h} \mathrm{c} / \mathrm{E} \\
& \lambda=6.625 \times 10^{-34} \times 3 \times 10^{8} / 4.48 \times 10^{-19} \\
& \lambda=4.436 \times 10^{-7} \\
& \lambda=\mathbf{4 4 3 6} \times 1 \mathbf{1 0}^{-10} \mathbf{m} \quad \text { OR } \quad \lambda=\mathbf{4 4 3 6} \mathbf{~ A}^{\mathbf{0}}
\end{aligned}
$$

 \&

2

1

2

1

2
\end{tabular}

\hline
\end{tabular}

WINTER- 16 EXAMINATION
 Model Answer
 Subject Code:

| Q.
 No. | Sub
 Q.N. | | Marking |
| :---: | :---: | :---: | :---: | :---: |
| Scheme | | | |

WINTER-16 EXAMINATION
 Model Answer
 Subject Code:

17202

WINTER- 16 EXAMINATION
 Model Answer
 Subject Code:

Page No: $\mathbf{0 6 / 1 0}$

WINTER- 16 EXAMINATION
 Model Answer
 Subject Code:

17202

Page No: $\underline{07 / 10}$

WINTER- 16 EXAMINATION
 Model Answer
 Subject Code:

17202

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
3.	a)	Attempt any FOUR of the following: State any four properties of X-rays. Any four properties i. They are electromagnetic waves of very short wavelength ii. They travel with speed of light. iii. They affect photographic plates. iv. They produce fluorescence in many substances. v . They can be reflected or refracted under certain conditions. vi. They are not deflected by magnetic or electric field. vii. They have high penetrating power. viii. They produce photoelectric effect. ix. They are invisible to eyes. x. X-ray kill some form of animal cell Threshold wavelength for silver is $3600 \mathrm{~A}^{0}$. Calculate the energy of photoelectrons emitted in eV when it is exposed $\mathrm{U} . \mathrm{V}$. light of wavelength $2500 \mathrm{~A}^{\circ}$. Formula with substitution Answer with unit Given: $\begin{aligned} & \lambda_{0}=3600 \mathrm{~A}^{0}=3600 \times 10^{-10} \mathrm{~m} \\ & \lambda=2500 \mathrm{~A}^{0}=2500 \times 10^{-10} \mathrm{~m} \\ & \mathrm{~h}=6.63 \times 10^{-34} \mathrm{Js} \\ & \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \end{aligned}$ $\begin{aligned} \mathrm{E} & =\mathrm{hc}\left(1 / \lambda-1 / \lambda_{0}\right) \\ \mathrm{E} & =6.63 \times 10^{-34} \times 3 \times 10^{8}\left(1 / 2500 \times 10^{-10}-1 / 3600 \times 10^{-10}\right) \\ \mathrm{E} & =2.431 \times 10^{-19} \mathrm{~J} \\ \mathbf{E} & =\mathbf{1 . 5 1} \mathbf{~ e V} \end{aligned}$	16 4 4 2 2

WINTER-16 EXAMINATION
 Model Answer
 Subject Code:
 17202

$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
3.	c)	State any two engineering applications and two medical applications of LASER. Each Application. Engineering applications : i. Lasers are used for engraving and embossing of printing plates. For example- number plate, name plate etc., ii. Lasers are used in cutting, drilling and welding metals. iii. Lasers are used in holography iv. Lasers are used in computer printers v. Lasers are used for 3D, Laser scanners vi. Lasers are used in controlled heat treatment vii. Lasers are used for data transfer through optical fiber from one computer to other viii. Lasers are used to find flaws or defect in material. Medical applications: i.Surgeryless eye treatment. ii. Surgeryless treatments of different body parts. iii. Scanning of different body parts. Note: Any other related application can be considered. Find the minimum wavelength and maximum frequency of X -rays produced by an X-ray tube working of 50 kV . Each Formula with substitution Each Answer with unit Given : V=50 kV $=50 \times 10^{3} \mathrm{~V}$ Find: $\lambda_{\min }=? v_{\max }=$? $\begin{aligned} \lambda_{\min } & =12400 \times 10^{-10} / \mathrm{V} \\ \lambda_{\min } & =12400 \times 10^{-10} / 50 \times 10^{3} \\ \lambda_{\min } & =2.48 \times 10^{-11} \mathrm{~m}=0.248 \times 10^{-10} \mathrm{~m} \\ \lambda_{\min } & =\mathbf{0 . 2 4 8 0} \mathbf{A}^{0} \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \end{aligned}$ 4 $\begin{aligned} & 1 \\ & 2 \end{aligned}$

Page No: 09/ 10

WINTER- 16 EXAMINATION
 Model Answer
 Subject Code:

17202

1) A metal emits electrons only when the incident (light) radiation has frequency greater than critical frequency $\left(v_{0}\right)$ called threshold frequency. Threshold frequency is different for different metals.
2) Photoelectric current is directly proportional to intensity of light and independent of frequency.
3) The velocity of photoelectron is directly proportional to the frequency of light.
4) For a given metal surface, stopping potential is directly proportional to the frequency and is not dependent on intensity light.
5) The rate of emission of photoelectrons from the photocathode is independent of its temperature i.e. photoelectric emission is different from thermionic emission.
6) The process is instantaneous.
