SUMMER - 2016 EXAMINATION
Subject Code: 17202
Model Answer Applied Science (Physics)
Page No: 01/14

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
		Important Instructions to examiners 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate. 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills). 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn. 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer. 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept.		

SUMMER - 2016 EXAMINATION
Subject Code: 17202
Model Answer
Page No: 02/14

SUMMER - 2016 EXAMINATION

Subject Code: 17202
Model Answer \quad Page No: 04/14

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
1)	(h)	```A vehicle of mass 2000 kg is moving with a speed of 3000 \(\mathrm{cm} / \mathrm{sec}\).Calculate the momentum of the car. Formula and substitution Answer with Unit Given: Mass of vehicle \((\mathrm{m})=2000 \mathrm{~kg}\) Speed of vehicle (v) \(=3000 \mathrm{~cm} / \mathrm{sec}=30 \mathrm{~m} / \mathrm{s}\). Momentum (P) =? We have, Momentum \((\mathrm{P})=\mathrm{mv}\) \(\mathrm{P}=2000 \times 30\) \(P=60000 \mathrm{~kg} . \mathrm{m} / \mathrm{sec}\)```	$\begin{array}{\|l} 1 \\ 1 \end{array}$	2
	(i)	State any two factors affecting thermo emf. Each factor Factors affecting thermo emf- 1) Nature of metals forming thermo couple. 2) Temperature difference between two junctions. 3)Materials used for the terminals, contact and contact Connectors.	1	2
	(j)	A car moving with an initial velocity $90 \mathrm{~km} / \mathrm{hr}$ comes to rest in 10 seconds when brakes are applied. Find the retardation value. Formula and substitution Answer with Unit Given : Initial velocity of a car $(\mathrm{u})=90 \mathrm{~km} / \mathrm{hr}=(90 \times 1000) / 3600$ $\mathrm{u}=25 \mathrm{~m} / \mathrm{sec} .$ Final velocity of a car (v) $=0 \mathrm{~m} / \mathrm{sec}$. Time $(\mathrm{t})=10 \mathrm{sec}, \mathrm{a}=$? Formula : $\begin{aligned} \text { Retardation }(\mathrm{a}) & =(\mathrm{v}-\mathrm{u}) / \mathrm{t} \\ \operatorname{Retardation}(\mathrm{a}) & =(0-25) / 10 \\ \text { Retardation }(\mathbf{a}) & =\mathbf{- 2 . 5} \mathbf{~ m} / \mathbf{s e c}^{2} \end{aligned}$	$\begin{array}{\|l\|} 1 \\ 1 \end{array}$	2
	(k)	State any two application s of ultrasonic testing. Each application i)To detect flaw: flaws in metal, rubber, tyre, concrete, wood composites, plastics components ii) Rail inspection: Rail tracks are tested on the spot which avoids service failure in track iii) Air-craft inspection: To detect crack iv) Tunnel inspection: To detect crack v) Bridge inspection vi) To detect subsurface discontinuities vii)To test plant component	1	

SUMMER - 2016 EXAMINATION				
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
1)	(k)	viii)Testing: It is used to test casting, forging, welding fabrication, rolling, heat treatment ix) Monitoring: Monitoring of thermal and atomic power plant, equipment pipe lines and structures x) On line tube testing: Channel ultrasonic flaw detection with thickness measurement of tube and hence corrosion State any four methods of non-destructive testing. Any four method N.D.T:- Non-Destructive Testing Methods. 1) Liquid penetrant testing (LPT) 2) Ultrasonic testing (UT) 3) Magnetic particle testing (MT) 4) Radiograph testing (RT) 5) Leak testing (LT) 6) Visual testing (VA) 7) Holographic testing (HT) 8) Thermal infra radiography (TR)	2	2
2)	a)	Attempt any FOUR of the following : Explain the terms (ii)Stimulated emission with reference to lasers. Each explanation i) Spontaneous emission: - When the electron jumps from higher energy state to lower energy state on its own accord, the emission is known as spontaneous emission. Radiations are in random direction, phase and wavelength. Independent of outside circumstances. No metastable state exist (ordinary exited state). Number of photons emitted is less.	2	16 4

SUMMER - 2016 EXAMINATION
Subject Code: 17202
Model Answer
Page No: 06/14

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
2)	(a)	ii) Stimulated emission: - When the electron jumps from higher energy state to lower energy state by triggering, (supplying external energy) the emission is known as spontaneous emission. Radiations are coherent, monochromatic and in same direction. Dependent of outside circumstances. Metastable state exists. Number of photons emitted is more. An object projected upwards making an angle of $38^{\boldsymbol{0}}$ with horizontal moves with an initial speed of $\mathbf{6 0 ~ m} / \mathrm{s}$. Calculate i) The distance from the point of projection at which the object strikes. ii) The time taken by the object to reach ground. Each Formula Each Answer with Unit Given: $V=60 \mathrm{~m} / \mathrm{s}, \quad \theta=38^{0}, \mathrm{R}=?, \mathrm{~T}=$? We have, (i) $R=v^{2} \sin 2 \theta / g$ $\begin{aligned} & \mathrm{R}=(60)^{2} \sin 2 \times 38 / 9.8 \\ & \mathbf{R}=\mathbf{3 5 6 . 4 3} \mathbf{~ m} \end{aligned}$ (ii) $\begin{aligned} & \mathrm{T}=2 \mathrm{v} \sin \theta / \mathrm{g} \\ & \mathrm{~T}=2 \times 60 \sin 38 / 9.8 \\ & \mathrm{~T}=7.53 \mathrm{sec} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	4

SUMMER - 2016 EXAMINATION
Subject Code: 17202
Model Answer
Page No: 09/14

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
2)	(e)	4. Application of developer: A thin layer of developer is applied over the surface. The role of developer is to pull the trapped penetrant out of the crack this provides good visibility of crack. 5. Inspection \& evaluation of defects: Surface of the specimen is seen under white light or ultraviolet or laser light. The crack can be visualized under light. 6. Post cleaning: After inspection the surface of the specimen is cleaned \& the specimen can be used for its intended purpose. If light of wavelength $3000 \mathrm{~A}^{0}$ is incident on metal surface of photoelectric work function 3 eV , will the electrons be ejected from the metal surface or not? If yes, calculate the maximum kinetic energy of the photoelectrons emitted. $\left(\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J}\right.$-s Each Formula and Answer with Unit Conclusion Given: $\quad h=6.63 \times 10^{-34} \mathrm{Js}, \mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, $\mathbf{W}_{0}=\mathbf{3 e V}=\mathbf{3} \times 1.6 \times 10^{-19} \mathrm{~J}, v=?, v_{0=?}$ We have, $\begin{aligned} & \mathrm{v}=\mathrm{c} / \lambda \\ & \mathrm{v}=3 \times 10^{8} / 3000 \times 10^{-10} \\ & \mathrm{v}=1 \times 10^{15} \mathrm{~Hz} \\ & \mathrm{v}_{0}=\mathrm{W}_{0} / \mathrm{h} \\ & \mathrm{v}_{0}=3 \times 1.6 \times 10^{-19} / 6.63 \times 10^{-34} \\ & \mathrm{v}_{0}=7.23 \times 10^{14} \mathrm{~Hz} \end{aligned}$ As $\mathbf{v}>\mathbf{v}_{0}$ Electrons will be emitted. $\begin{aligned} \text { K.E. } & =\mathrm{h}\left(v-v_{0}\right)=6.63 \times 10^{-34}\left(1 \times 10^{15}-7.23 \times 10^{14}\right) \\ \text { K.E } & =1.8 \times 10^{-19} \mathrm{~J} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	4

SUMMER - 2016 EXAMINATION
Subject Code: 17202 Model Answer

Page No: 10/14

SUMMER - 2016 EXAMINATION				
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
3)	(b)	Explain the production of ultrasonic waves by piezoelectric method. Diagram Principle Explanation Principle: When the electric field is applied across the piezoelectric crystal its dimensions changes and when alternating PD is applied across crystal then the crystal sets into elastic vibrations along the perpendicular axis. Working: A chip of piezo-electric crystal like quartz is placed between two plates as shown in figure. A suitable oscillator is connected across it. The electric oscillations along the electric axis produce mechanical vibrations along the mechanical axis. The frequency of oscillator is increased. At a particular frequency of oscillator, the oscillator frequency becomes equal to natural frequency of vibration of crystal. Then the crystal sets into resonance vibration and ultrasonic waves are produced.	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	4

SUMMER - 2016 EXAMINATION
Model Answer
Page No: 13/14

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
3)	(d)	Define recoil of gun. Derive the expression for recoil velocity of gun. Definition Derivation Recoil of gun :If a bullet is fired from a gun then bullet shoots out with a large velocity and at the same time gun moves back with little velocity this backward movement (jerk) is called as recoil of gun. Expression for recoil velocity of gun: Consider m_{1} is the mass of bullet, v_{1} be the velocity of bullet and m_{2} is the mass of gun also v_{2} is the velocity of gun Before firing: The gun and bullet are at rest i.e. it has zero velocity therefore the total momentum before firing is zero. After firing: The bullet moves forward and gun moves backward. $\begin{aligned} & \text { Momentum of bullet }=\mathrm{m}_{1} \mathrm{v}_{1} \\ & \text { Momentum of gun }=\mathrm{m}_{2}\left(-\mathrm{v}_{2}\right) \end{aligned}$ Here, Negative sign indicates that the gun moves back. The total momentum of the system after firing $=m_{1} \mathrm{v}_{1}-m_{2} \mathrm{v}_{2}$ According to law of conservation of momentum, Total momentum before firing $=$ Total momentum after firing $\begin{aligned} 0 & =m_{1} \mathrm{v}_{1}-\mathrm{m}_{2} \mathrm{v}_{2} \\ \mathrm{~m}_{2} \mathrm{v}_{2} & =\mathrm{m}_{1} \mathrm{v}_{1} \\ \mathbf{v}_{\mathbf{2}} & =\mathbf{m}_{\mathbf{1}} \mathbf{v}_{\mathbf{1}} / \mathbf{m}_{\mathbf{2}} \end{aligned}$ This gives the recoil velocity of gun. (i)State Joule's law and write its mathematical form. (ii)Calculate the amount of heat generated when a current of 2 Amp flows through a resistance of $\mathbf{6 . 4} \boldsymbol{\Omega}$ for $\mathbf{1 0}$ minutes. Statement Mathematical form Formula \& Answer with unit (i)Statement of Joule's Law: "The amount of heat generated (H) due to flow of electric current through a resistance is directly proportional to square of the current $\left(\mathrm{I}^{2}\right)$, the resistance (R), the time for which current flow(t)" Hence, $\begin{aligned} & H \quad \alpha I^{2} R t \\ & H=\text { Constant } \times I^{2} R \mathrm{t} \\ & \mathrm{H}=(1 / \mathrm{J}) \mathrm{I}^{2} \mathrm{Rt} \\ & \mathbf{H}=\mathbf{I}^{2} \mathbf{R} \mathbf{t} / \mathbf{J} \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$ $\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	4

SUMMER - 2016 EXAMINATION
Subject Code: 17202
Model Answer
Page No: 14/14

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
3)	(e)	Where, J = Joule's Constant or Mechanical equivalent of heat. $\mathrm{I}=$ Current, $\mathrm{R}=$ Resistance, $\mathrm{t}=$ Time \& $\mathrm{H}=$ Heat generated. (ii)Given: $\mathrm{I}=2 \mathrm{Amp}, \mathrm{t}=10$ minute $=10 \times 60=600 \mathrm{Sec}$. $\mathrm{R}=6.4 \Omega, \mathrm{~J}=4200 \mathrm{~J} / \mathrm{Kcal} \text { (Assumed Value), } \mathrm{H}=\text { ? }$ We have, $\begin{aligned} \mathrm{H} & =\mathrm{I}^{2} \mathrm{Rt} / \mathrm{J} \\ \mathrm{H} & =(2)^{2} \times 6.4 \times 600 / 4200 \\ \mathrm{H} & =25.6 / 7 \\ \mathbf{H} & =\mathbf{3 . 6 5 7 1} \mathbf{~ K c a l} \end{aligned}$		
	(f)	Calculate the minimum wavelength and maximum frequency of X -Rays produced by an X -ray tube operating at 60 kV . ($\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J}$-Sec; $=\mathbf{1 . 6 \times 1 0}{ }^{-19} \mathrm{C}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$) Each Formula and substitution Answer with unit Given: $\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{Sec}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$ $\mathrm{V}=60 \mathrm{kV}=60 \times 10^{3} \mathrm{v}, \lambda_{\min }=?, \mathrm{f}_{\max }=?$ We have, $\quad \lambda_{\text {min }}=\mathrm{hc} / \mathrm{eV} \quad$ OR $\quad \lambda_{\text {min }}=12400 / \mathrm{V}$ $\begin{aligned} & \lambda_{\min }=6.63 \times 10^{-34} \times 3 \times 10^{8} / 1.6 \times 10^{-19} \times 60 \times 10^{3} \\ & \lambda_{\min }=0.206 \mathrm{~A}^{0} \\ & \lambda_{\min }=\mathbf{0 . 2 0 6} \times \mathbf{1 0}^{-\mathbf{- 1 0}} \mathbf{~ m} \end{aligned}$ Now, $\begin{aligned} \mathrm{f}_{\max } & =\mathrm{C} / \lambda_{\min } \\ \mathrm{f}_{\max } & =3 \times 10^{8} / 0.206 \times 10^{-10} \\ \mathbf{f}_{\max } & =\mathbf{1 4 . 5 6 3} \times 1 \mathbf{1 0}^{\mathbf{1 8}} \mathbf{H z} \end{aligned}$ OR $f_{\max }=145.63 \times 10^{17} \mathrm{~Hz}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	4

