WINTER - 2014 EXAMINATION

Subject Code: 17202
Model Answer Applied Science (Physics)
Page No: 1/14

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
	1mportant Instructions to examiners: as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate. 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills). 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn. 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer. 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept.			

WINTER - 2014 EXAMINATION
Model Answer
Page No: 02/14

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
a)	Attempt any Nine Define angular displacement . State its S.I. unit. Definition S.I.unit Angular displacement : Angular displacement is defined as the angle traced by radius vector .OR Angular displacement is defined as the angle subtended at the centre by path travelled. S.I.unit : radian = rad Define impulse and impulsive force. Each Definition b) Impulse : It is defined as change in momentum. OR It is defined as product of large force on a body and very small time for which force acts Impulsive force : It is defined as a large force acts on a body for very small time . State work energy principle. Principle Work energy principle: It states that the work done by a system of forces acting on a body between any two points is equal to the change in kinetic energy of a body between these two points. Define centripetal force. State its S.I. unit. Definition S.I.unit	1	1	1

WINTER - 2014 EXAMINATION
Subject Code: 17202
Model Answer
Page No: 03/14

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Que. \\
No.
\end{tabular} \& \begin{tabular}{l}
Sub. \\
Que.
\end{tabular} \& Stepwise Solution \& Marks \& \begin{tabular}{l}
Total \\
Marks
\end{tabular} \\
\hline 1) \& d)

e) \& | Centripetal force - It is defined as the force acting along the radius towards the centre of the circular path, which keeps the particle in uniform circular motion. |
| :--- |
| OR |
| Centripetal force is the force acting on a particle performing uniform circular motion which is along the radius and towards the center of circular path. |
| S.I .unit : netwon $=\mathbf{N}$ |
| State any two properties of ultrasonic waves |
| Each Property |
| i) Frequency of these sound waves is more than 20 kHz . |
| ii) It has shorter wavelength. |
| iii) They carry high amount of sound energy. |
| iv) The speed of propagation of ultrasonic waves increases with increase in frequency. |
| v) They show negligible diffraction. |
| vi) Ultrasonic waves travel over long distance without considerable loss. |
| vii) Ultrasonic waves undergo reflection and refraction at the separation of two media. |
| viii) If it passed through fluid, then temperature of the fluid increases. |
| ix) They travel with constant speed through a homogeneous medium. |
| x) They possess certain vibrations which are used as good massage action in case of muscular pain. | \& 1 \& 2

\hline \& f) \& | State two characteristics of thermocouple. |
| :--- |
| Each characteristic |
| i) The e.m.f generated depends on the nature two meatals used. |
| ii) The e.m.f generated depends on the temperature difference between two junctions. |
| iii) The effect is reversible. |
| Any other relevant. | \& 1 \& 2

\hline
\end{tabular}

WINTER - 2014 EXAMINATION
Subject Code: 17202
Model Answer
Page No: 04/14

WINTER - 2014 EXAMINATION
Subject Code: 17202
Model Answer
Page No: 05/14

WINTER - 2014 EXAMINATION
Model Answer
Page No: 06/14

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
1)	X) X- Rays are used in surgery to detect bone fractured. X- Rays are used to cure diseases like cancer to cure skin diseases and destroy tumours. X- Rays are used to detect bullets position inside the body What is spontaneous emission and stimulated emission? Each definition Spontaneous emission : When the electron jumps from higher energy state to lower energy state on its own accord, the emission is known as spontaneous emission. Stimulated emission : When the electron jumps from higher energy state to lower energy state by triggering,(supplying external energy) the emission is known as spontaneous emission. State any two properties of X-rays. Any two properties They are electromagnetic waves of very short wavelength They travel with speed of light. They affect photographic plates. They produce fluorescence in many substances. They can be reflected or refracted under certain conditions. They are not deflected by magnetic or electric field. They have high penetrating power. They produce photoelectric effect. They are invisible to eyes. X-ray kill some form of animal cell.	1	2	

WINTER - 2014 EXAMINATION
Subject Code: 17202
Model Answer
Page No: 07/14

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
2)	a)	Attempt any four of the following		16
		m / s from a gun of mass 10 kg . Calculate recoil velocity of gun. Given Formula with substitution Answer with unit	$\begin{array}{\|l\|} 2 \\ 2 \end{array}$	4
		Given :		
		According to law of conservation of momentum. $\begin{aligned} & \mathrm{m}_{1} \mathrm{u}_{1}=\mathrm{m}_{2} \mathrm{u}_{2} \\ & \mathrm{u}_{1}=\mathrm{m}_{2} \mathrm{u}_{2} / \mathrm{m}_{1} \\ & \mathrm{u}_{1}=100 \times 10^{-3} \times 500 / 10 \\ & \mathrm{u}_{1}=5 \mathrm{~m} / \mathrm{s} \end{aligned}$		
	b)	Define i) Angle of projection ii) Trajectory iii) Time of flight iv) Range of projectile.	1	4
		Each definition		
		i) Trajectory :- The path along which projectile moves is called trajectory. OR It is also defined as the path traced by an object in projectile motion.		
		ii) Angle of projection:- It is defined as angle made by the velocity of projection with the horizontal at the original point.		
		iii) Time of flight:- The total time in which projectile covers the entire trajectory is called as time of flight. iv) Range of projectile:- The total horizontal distance covered by a projectile is called as range.		

WINTER - 2014 EXAMINATION
Subject Code: 17202
Model Answer
Page No: 8/14

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
2)	c)	Explain the piezoelectric method of production of ultrasonic waves . Diagram with label Principle Working Principle: When the electric field is applied across the crystal its dimensions changes and when alternating PD is applied across crystal then the crystal sets into elastic vibrations Working: A chip of piezo-electric crystal like quartz is placed between two plates as shown in figure. A suitable oscillator is connected across it. The electric oscillations along the electric axis produce mechanical vibrations along the mechanical axis. The frequency of oscillator is increased. At a particular frequency of oscillator, the oscillator frequency becomes equal to natural frequency of vibration of crystal. Then the crystal sets into resonance vibration and ultrasonic waves are produced	$\begin{aligned} & 2 \\ & 1 \\ & 1 \end{aligned}$	4
	d)	State the criteria for selection of NDT method. Any four criteria i) Codes or standard requirement ii) Specification of material to be tested, for example, nature of material, its size and shape iii) Type of disorders to be detected, also depend on nature of disorders. iv) Testing also depends on manufacturing process of material to be tested v) It is also depending on the equipments available for testing vi) Total cost required to test the material.	4	4

WINTER - 2014 EXAMINATION

Model Answer
Page No: 09/14
Subject Code: 17202

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
2)	e)	A body is allowed to fall from the terrace of a building 200 m high. After what time will it reach the ground? What will be its velocity at that time? Two formulae with substitution Two answers with units i) State any four NDT methods used in industries. Each method NDT methods: 1) Liquid penetrant testing (LPT) 2) Ultrasonic testing (UT) 3) Magnetic particle testing (MT) 4) Radiograph testing (RT) 5) Leak testing (LT) 6) Visual testing (VA) 7) Holographic testing (HT) 8) Thermal infra radiography (TR) Note: Any other relevant method can be considered ii) State advantages of NDT Any two advantage	$\begin{aligned} & 2 \\ & 2 \end{aligned}$ $1 / 2$	$4{ }^{4}$

WINTER - 2014 EXAMINATION

Subject Code: 17202
Model Answer
Page No: 10/14

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
2)	f)	Advantages :2. 100% examin inspection of each \& every component is possible. 3. NDT methods can be automated to lower their costs. 4.Testing is possible on shop, floor because of portable equipments; this controls the equality of further production. 5. Permanent record of testing can be made during the testing process. 6. The destructed parts can be separated in the early stages of manufacturing. This saves the time \& production cost. 7. Higher accuracy, reliability \& repeatability in the test result can be obtained. 8. Any other relevant advantage		

WINTER - 2014 EXAMINATION
Subject Code: 17202
Model Answer
Page No: 11/14

WINTER - 2014 EXAMINATION

Subject Code: 17202
Model Answer
Page No: 12/14

Que. No.	Sub. Que.		Marks	Total Marks
3)	b)			

WINTER - 2014 EXAMINATION
Subject Code: 17202
Model Answer
Page No: 14/14

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
3)	e)	State any four engineering applications of LASER.		4
		Each Application		
		Lasers are used for engraving and embossing of printing plates.		
		For example- number plate, name plate etc., Lasers are used in cutting, drilling and welding metals.		
		Lasers are used in holography		
		Lasers are used in computer printers Lasers are used for 3D, Laser scanners		
		Lasers are used in controlled heat treatment		
		Lasers are used for data transfer through optical fiber from one computer to other		
	f)	A wheel of diameter 3 m increases its a speed uniformly from 150 rpm to 300 rpm in 30 second. Calculate angular acceleration and linear acceration.		4
		Each Formula \& Substitution	2	
		Each Answer with unit	2	
		Given: Required: $\mathrm{d}=3 \mathrm{~m}$ $\alpha=?$ $\mathrm{r}=1.5 \mathrm{~m}$ $\mathrm{a}=?$ $\mathrm{n}_{0}=150 / 60=2.5$ $\mathrm{n}_{1}=300 / 60=5$ $\mathrm{t}=30 \mathrm{~s}$		
		$\alpha=\mathrm{w}_{1}-\mathrm{w}_{0} / \mathrm{t}$		
		$\alpha=2 \pi\left(\mathrm{n}_{1}-\mathrm{n}_{0}\right) / \mathrm{t}$		
		$\alpha=2 \times 3.14 \times(5-2.5) / 30$		
		$\alpha=0.523 \mathrm{rad} / \mathrm{s}^{2}$		
		$\mathrm{a}=\mathrm{r} \alpha$		
		$\mathrm{a}=1.5 \times 0.523$		
		$\mathrm{a}=0.784 \mathrm{~m} / \mathrm{s}^{2}$		

