

Subject Code: 17202

SUMMER – 2014 EXAMINATION Model Answer Applied Science (Physics)

Page No: 1/14

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
No.	Que.	 Important Instructions to examiners: The answers should be examined by key words and not as word-to-word as given in the model answer scheme. The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate. The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills). While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn. Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer. In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding. For programming language papers, credit may be given to any other program based on equivalent concept. 		Marks
		 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn. 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer. 6) In case of some questions credit may be given by 		
		 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept. 		

Subje	Subject Code: 17202		lel Answer	Page No: (02/14
Que.	Sub.	Stopuzico S	Colution	Marko	Total
No.	Que.	Stepwise 5		Ivial KS	Marks
1)		Attempt any Nine			18
	a)	Define uniform velocity and unifo	orm acceleration.		2
		Each Definition		1	
		TT 10 1 1/			
		Uniform velocity:-	accoment in equal interval of		
		time then it is called uniform veloci			
		OR			
		If a body is moving with con-	stant speed in the same		
		direction, then it is said to be uniform	m velocity.		
		Uniform acceleration:-			
		If the acceleration of a body is u	iniform in magnitude and		
		direction w.r.t. time then it is called	uniform acceleration.		
		UK If change in velocity of a body it	s constant in every equal		
		interval of time then it is called unif	Form acceleration.		
	b)	Write any two points to distinguis	sh between work and energy.		2
	2)	Any two point		2	_
		Work I	Energy		
		Work is defined as product	Energy is defined as		
		of force acting on a body of and displacement produced	capacity of doing work.		
		Work does not exists in	Energy exists in nature in		
		nature in different forms	different forms		
		State any two different NDT meth	ods that are used in		
	c)	industries.		1	2
		Each method			
		NDT methods:			
		1) Liquid penetrant testing (LP	T)		
		2) Ultrasonic testing (UT)			
		3) Magnetic particle testing (M	(T)		
		4) Radiograph testing (RT)			
		5) Leak testing (LT)			
		6) Visual testing (VA)			
		7) Holographic testing (HT)			
		8) Thermal infra radiography (TR)		
		Note: Any other relevant factors can	be considered		

Subje	ct Code	e: 17202 <u>Model Answer</u> F	age No: 03	6/14
Que. No.	Sub. Oue.	Stepwise Solution	Marks	Total Marks
1)	d)	Define range of projectile. State formula with symbol meaning Definition Formula with meaning Range of projectile (R) :- The total horizontal distance covered by a projectile is called as a range (R). $R = \frac{v^2 \sin 2\theta}{g}$ Where, R = Range of projectile. v = Velocity of projectile. θ = Angle of projectile. g = Gravitational acceleration.	y 1 1	2
	e)	 State any two properties of ultrasonic waves Each Property Frequency of these sound waves is more than 20kHz. It has shorter wavelength. They carry high amount of sound energy. The speed of propagation of ultrasonic waves increases with increase in frequency. They show negligible diffraction. Ultrasonic waves travel over long distance without considerable loss. Ultrasonic waves undergo reflection and refraction at the separation of two media. If it passed through fluid, then temperature of the fluid increases. They travel with constant speed through a homogeneous medium. They posses certain vibrations which are used as good massage action in case of muscular pain. 	1	2
	f)	State any two points of difference between Seebeck's effect an peltier effect. Any two point	d 2	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER - 2014EXAMINATION Subject Code: 17202 Model Answer Page No: 04/14 Que. Sub. Total Marks **Stepwise Solution** Marks No. Que. 1) f) 2 Seebeck's effect **Peltier effect** When two dissimilar metals are When electric current flows through a junction of two metals joined together so that two junctions are formed and if one of thermocouple, then heat is generated at one junction and junction is heated and other is heat is absorbed at the other cooled then electric current junction. flows through it. emf is developed across the One junction gets heated and other get cooled. two junction. emf generated is small in mV. Heat generated or absorbed is small. of heat Amount generated Amount of heat generated depends on pair of metals and depends on pair of metals and temperature difference. current through it. How can you increase thermo emf using different metals in 2 g) thermoelectric series? Give one example. 1 **Explanation** 1 **Examples** If the metals used in thermocouple are more apart in the Thermocouple series, then the thermo emf obtained is more. Examples:- If Sb-Bi thermocouple is used then it gives maximum emf for given temperature difference. h) State two properties of photon. 2 2 **Any two Properties** i. It is an invisible entity. The existence of photon is same as existence of electron. ii. Photon is electrically neutral. iii. They cannot be deflected by electric or magnetic field. iv. They travel with speed of light. v. Photon does not ionize.

Subje	ct Code	e: 17202 <u>Model Answer</u> Pag	e No: 05/14		
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks	
Subject Que. No. 1)	t Code Sub. Que. i)	Model AnswerPageStepwise SolutionThe photo electric work function of a photo sensitive material is 3 x 10 ⁻¹⁹ J. Calculate its threshold wavelength.Formula with calculationAmy of the state is threshold wavelength.Formula with calculationAmy of the state is threshold wavelength.Formula with calculationAmy of the state is threshold wavelength.Gold and the state is threshold wavelength.Gold and the state is threshold wavelength.Gold at 10 ⁻¹⁹ Jc = λ_0 vo $u_0 = 3 \times 10^{-19}$ $v_0 = \frac{3 \times 10^{-19}}{6.63 \times 10^{-34}}$ $\lambda_0 = 6.622 \times 10^{-7}$ m $v_0 = 0.452 \times 10^{15}$ Hz. $\lambda_0 = 6622 A^0$ Write any two propertiesi. They are electromagnetic waves of very short wavelength.ii. They are electromagnetic waves of very short wavelength.iii. They are not deflected by magnetic or electric field.vii. They are not deflected by magnetic or electric field.viii. They are not deflected by magnetic or electric field.viii. They are invisible to eyes.x. X-ray kill some form of animal cellDraw a neat labeled diagram of Coolidge X- ray tube.Neat labeled diagramThe state frameCoolidge tabeThe state frame <td colspan<="" td=""><td>e No: 05/ Marks 1 1 2 2</br></td><td>14 Total Marks 2 2</td></td>	<td>e No: 05/ Marks 1 1 2 2</br></td> <td>14 Total Marks 2 2</td>	e No: 05/ Marks 1 	14 Total Marks 2 2
		A - Ammeter B - Battery Rh - Rheostat P1 P2 - Primary of transformer S1, S2 - Seconday of transformer S1, S2 - Seconday of transformer			

Subje	ct Code	:: 17202 <u>Model Answer</u> I	Page No: (06/14
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
1)	1)	State two remarkable properties of LASER. Any two properties	2	2
		 Properties i) The light is coherent: The light with waves, all exactly in same phase. ii) The light is monochromatic: The light whose waves all have the same frequency or wavelength. iii) The light is unidirectional: The light produces sharp focus. iv) The beam is extremely intense: The light has extreme brightness 		
2)		Attempt any four.		16
	a)	A vehicle covers 60 m in 3 rd second and 100 m in 7 th second during its motion. Calculate the acceleration and distance travelled in 10 th second.		4
		Formula Three Answers with unit	1 3	
		Solution:		
		Given: $S_3 = 60 \text{ m}$, $S_7 = 100 \text{ m}$		
		Required: $a = ?$ $S_{10} = ?$		
		$S_n = u + a/2 (2n-1)$		
		$S_3 = u + a/2 (2x 3 - 1)$		
		60 = u + 5a/2(1)		
		$S_7 = u + a/2 (2x 7 - 1)$		
		100 = u + 13a/2(2)		
		Subtracting eq^n (1) from eq^n (2)		
		100 - 60 = 13a/2 - 5a/2		
		40 = 4a		
		$\mathbf{a} = 10 \ \mathbf{m/s^2}$		

Subje	ct Code	e: 17202 <u>Model Answer</u> F	age No: 2	7/14
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
2)	a)	Putting above value in eq ⁿ (1) $60 = u + 5 \ge 10/2$		
		u = 35 m/s		
		$S_{10} = 35 + 10(2 \times 10 - 1)/2$		
		$S_{10} = 130 \text{ m}$		
	b)	A bullet of weight 0.98 N is fired with a velocity of 400 m/s horizontally in a wooden block weighing 50 N resting on horizontal surface. If the bullet remains embedded in the block , calculate velocity of block after impact.		4
		Given Formula with substitution Answer with unit	1 2 1	
		$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
	c)	Distinguish between centripetal force and centrifugal force.		4
		Any four points	4	

Subject Code: 17202

Model Answer

Page No: 08/14

Que. No.	Sub. Que.	Stepwise Solution				Marks	Total Marks
2)	c)						
_)	c)	Centripetal force		Centrifug	al force		
		Centripetal force is	the force	Centrifuga	al force is the force		
		acting on a particle	performing	acting on	a particle performing		
		uniform circular me	otion which	uniform ci	ircular motion which		
		is along the radius a	and towards	is along th	e radius and away		
		the center of circula	ar path.	from the c	enter of circular		
				path.			
		It is a real force		It is a ima	ginary(pseudo) force		
		It is acting along th	e radius	It is acting	g along the radius		
		and towards the cer	iter	and away	from the center		
		It maintains uniform	n circular	It helps to	obey Newton's laws		
		motion		of motion of reference	ce.		
		E .g. stone tied at o	ne end of	E.g. Perso	n sitting in merry go		
		string and whirled,	electron	round or g	giant wheel, Motor		
		revolving around th	e nucleus .	cyclist dri	ving in a artificial		
		etc		death well	. etc		
	d)	Compare between 1 principle of Workin medium. Each point	LPT and UT 1g , advanta	method or ges , disadv	n the basis of vantages and probing	1	4
		Point	LPT		UT		
		Duinainte ef	C		Deflection		
		Principle of Working	Capillary a	ction	Reflection,		
		working			scattering of		
					Illtrasonics from		
					disorder		
		Advantages	Easy & eco	onomical	Detection of		
		i ia valitages	Detection of	of defects	internal defects.		
			open to sur	face.			
		Disadvantagas	Not usoful	for highly	Cannot be used		
		Disadvantages	porous mat	erial.	without couplant.		
		Probing medium	Penetrant		Ultrasonics		
		L	1				

Subject Code: 1		: 17202 <u>Model Answer</u> Page	No: 09/1	4
Que.	Sub.	Stepwise Solution	Marks	Total
$\frac{No.}{2}$	Que.	Explain the production of ultrasonic ways using piezoelectric		Marks
2)	<i>e)</i>	Explain the production of diffusion waves using prezoriectific method? Diagram with label Principle Working Principle: When the electric field is applied across the crystal its dimensions changes and when alternating PD is applied across crystal then the crystal sets into elastic vibrations	2 1 1	4
		Electric oscillator circuit		
		Working: A chip of piezo-electric crystal like quartz is placed between two plates as shown in figure. A suitable oscillator is connected across it. The electric oscillations along the electric axis produce mechanical vibrations along the mechanical axis. The frequency of oscillator is increased. At a particular frequency of oscillator, the oscillator frequency becomes equal to natural frequency of vibration of crystal. Then the crystal sets into resonance vibration and ultrasonic waves are produced		
	f)	State four limitations of NDT methods.		4
		Any four limitations	4	

Subject Code: 17202

Model Answer

Page No: 10/14

Que.	Sub.	Stenwise Solution	Marks	Total
No.	Que.		IVIUI KS	Marks
2)	f)	Limitation of NDT:		
		i.For complete examination of the material minimum 2 methods required.		
		ii. Trained & certified person are required		
		iii. Cost of equipment is high & thus testing charge are more.		
		iv. Qualitative testing is possible, however quantitative testing is difficult.		
		v. NDT interpretations are relative one should know the standard results first.		
3		Attempt any four.		16
	a) i)	State Joule's law.Give its equation.		4
		Statement	2	
		Equation	2	
		Joule's law : It state that the amount of heat generated (H) due to the flow of electric current through a resistance is directly proportional to		
		 Square of the current (I²) Resistance (R) Time for which current flows (t) 		
		$H = \left(\frac{1}{I}\right)I^2Rt$		
	ii)	Calculate amount of heat generated when current of 2A flows for 5 min. through resistance of 5.2 Ω (J=4200 J/kcal)		4
		Formula		
		Substitution A pswor with unit	1	
		Answer with unit	1	
			۷	

Subject Code:		e: 17202 <u>Model Answer</u> Pa	2age No: 11/14		
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks	
3	a) ii)	Given: $I = 2 A$, $t = 5min = 5X60 = 300 s$ $R = 5.2 \Omega$, $J = 4200 J/kcal$ Required: $H = ?$ $H = I^2 Rt / J$ H = 2 x 2 x 5.2 x 300 / 4200 H = 1.48 kcal			
	b)	Explain variation of thermo emf with temperature of junctions. Define neutral temperature and inversion Temperature.		4	
		Diagram	1		
		Explanation	1		
		Definitions Maximum emf Thermo emf Neutral Inversion temperature Temperature - emf is negative For a given thermocouple , the temperature of one junction is placed	2		
		at 0 ^o C and temperature of other junction is increased by providing heat. The emf generated is measured with the help of millivoltmeter. Emfs e_1 , e_2 , e_3 ,for different temperatures t_1 , t_2 , t_3 , are recorded and the graph is plotted. It is observed that as the temperature difference between two junctions increases, emf also increases and reaches to maximum value and thereafter emf decreases, becomes zero and reverses its sign.			

Subject Code: 17202

Model Answer

Page No: 12/14

Que.	Sub.	Stepwise Solution	Marks	Total
No.	Que.	Stepwise Solution	IVIAI KS	Marks
3)	b)	Neutral temperature – The temperature at which the emf is maximum is called inversion temperature		
		Inversion Temperature: The temperature at which the emf becomes zero and changes its sign (becomes negative) is call inversion temperature.		
	c)	Define i) Threshold frequency ii) Threshold wavelength iii) Work function iv) Stopping potential		4
		Each Definition	1	
		 Threshold Frequency: It is the minimum frequency of incident light at which emission just begins. Threshold Wavelength: It is the maximum wavelength of incident light at which emission just begins. Work Function: It is the minimum energy required just to emit or detach or knock the electron from the metal surface. Stopping potential: It is the negative potential of photoelectric cell at which photoelectric current becomes zero. 		
	d)	State engineering and scientific applications of X-rays.		4
		Any two applications in each field	2	
		Engineering Application		
		 i. X- rays are used to detect the cracks in the body of aero plane or motor car ii. X- rays are used to detect the manufacturing defects in rubber tyres or tennis ball in quality control iii. X – rays are used to detect flaws or cracks in metal jobs. iv. X- rays are used to distinguish real diamond from duplicate one v. X- rays are used to detect smuggling gold at airport and docks (ship) yard. X-rays are used to detect cracks in the wall vii. X- ray radiography is used to check the quality of welded joints 		

Subject Code: 17202

Model Answer

Page No: 13/14

Que.	Sub.	Stenwise Solution	Marks	Total
No.	Que.		IVIAI KS	Marks
3)	d)	Scientific Applications:		
		i. $X - rays$ are used to study structure of crystal and alloy		
		 ii. X – rays are used to chemical analysis and for determination of atomic number of chemical elements. 		
		 iii. X – rays are used to study structure of substances like cellulose, rubber and plastic. 	1	4
		 iv. X – rays are used for identification of chemical elements present in the solution. 	1	4
		v. $X - rays$ are used for analysis of structure of organic molecules.		
	e)	What is population inversion? State four methods of pumping.		4
		Definition	2	
		Four methods	2	
		Population inversion:		
		Making population of excited state more than that of ground state is		
		called population inversion.i.e. $N_2 >> N_1$		
		Methods of pumping:		
		Optical pumping		
		Direct electron excitation (Electric pumping)		
		Inelastic atom-atom collision		
		Chemical reaction		

Subject Code: 17202

Model Answer

Page No: 14/14

Que.	Sub.	Stepwise Solution	Marks	Total
NO.	Que.	-		Marks
5)	f)	A fly wheel rotating at 800 rpm accelerates to 2000 rpm in 10 minutes. Calculate the uniform acceleration and the angular displacement within the given period.		4
		Two formulae with substitution Two Answers with unit	2 2	
		Given : ω_0 =800 rpm = 800 x 2 π /60 = 83.78 rad/s ω_1 = 2000 rpm = 2000 x 2 π /60 = 209.44 rad/s t = 10 min = 10 x 60 sec. = 600 s Uniform acceleration		
		$\alpha = 0.208 \text{ rad/s}^2$		
		Angular displacement		
		$\theta = \omega_0 t + \alpha t^2 / 2$		
		$\theta = (83.78 \text{ x } 600) + \frac{1}{2} (0.209) (600)^2$		
		$\theta = 87888 \text{ rad} .$		