

Subject Code: 17103

SUMMER-15 EXAMINATION

Page No: 1/12

Model Answer -Basic Chemistry

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
110.	Que.	Important Instructions to examiners:	 	IVIALNS
		Important Instructions to examiners:		
		1) The answers should be examined by key words and not as		
		word-to-word as given in the model answer scheme.		
		2) The model answer and the answer written by candidate may		
		vary but the examiner may try to assess the understanding level of		
		the candidate.		
		3) The language errors such as grammatical, spelling errors should		
		not be given more Importance (Not applicable for subject English		
		and Communication Skills).		
		4) While assessing figures, examiner may give credit for principal		
		components indicated in the figure. The figures drawn by candidate		
		and model answer may vary. The examiner may give credit for any		
		equivalent figure drawn.		
		5) Credits may be given step wise for numerical problems. In some		
		cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.		
		6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's		
		understanding.		
		7) For programming language papers, credit may be given to any		
		other program based on equivalent concept.		
		other program based on equivalent concept.		

Subject Code: 17103

Page No: 2/12

Que. No.	Sub. Que.		Model Ans	wer	Marks	Total Marks
1	a)		t any nine of the following: uish between energy level a	nd subenergy level. (any two		18
		Sr. No.	Energy Level	Sub - Energy Level	1	2
		1)	Bohr's stationary orbits with definite amount of energy called energy levels.	Close grouping of energy levels in the main energy levels called sub – energy levels.	mark each	
		2)	Denoted by letters K, L, M, N, O, P etc.	Denoted by letters s, p, d, f		
		3)	Maximum number of electrons is given by $2n^2$ in energy level.	Maximum number of electrons in sub energy levels are $s = 2$, $p = 6$, $d = 10$, $f = 14$.		
		4)	These are circular or elliptical in shape.	They have different geometrical shapes i. e. $s =$ spherical, $p =$ dumb-bell shaped etc.		
	b)	Give <u>tw</u>	o applications of carbon and	l cobalt isotopes.		
		Applica	ations of Carbon isotopes : (a	any two)		2
		2)] 3) 2	earth. C ¹² participates in all respiration and photosynthesis Fossil fuels are created fron matter.	nature as backbone of life on metabolic processes including n dead carbon based organic sfied by carbon base crude oil	½ mark each	
		4)	C ¹³ has application in NMR, respond to radio frequency sig	as it has nuclear spin, which nal, used to determine identity of		
		6)	water sources. C ¹⁴ is the radioactive isotope	of carbon, used in radiocarbon determine the age of carbon		

Subject Code: 17103

Page No: 3 /12

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
1.	b)	Application of isotopes of Cobalt: (any two)		IVIAI KS
		Cobalt – 57 (Co^{57}): It is a radioactive isotope used in		
		1) Medical tests	1/2	
		2) Used as a radiolabel for vitamin B_{12} uptake.	mark each	
		 3) Useful for Schilling test i. e. a medical investigation done for patients with vitamin B₁₂ deficiency 	each	
		Cobalt –60 (Co^{60}): It is a gamma ray source used in -		
		 Sterilization of medical supplies and medical waste. Radiation treatment of foods for sterilization (cold pasteurization) Industrial radiography (weld integrity radiographs) In density measurement (concrete density measurement) In tank fill height switches. Used to treat various types of cancers. 		
		7) Can be used to detect flaws in metal components.		
	c)	Define electrovalency and covalency.		2
		Electrovalency: The number of electrons that an atom of an element gains or loses to complete its last orbit is called electrovalency.	1	
		Covalency: The valency obtained by the mutual sharing of electrons between the similar or dissimilar atoms, so as to complete their last orbits is called 'Co-volency'.	1	
		Or The number of electron pairs which an atom of an element shares with another similar or dissimilar atom is called as covalency.		
	d)	Define conductor and give two examples.		2
		Conductor: A substance which allows electric current to pass through it is known as conductor.	1	
		Examples: (any two)	1⁄2 mark	
		All metals, graphite, fused salts, aqueous solutions of acids, bases and salts.	each	

Page No: 4/12

Sul	oject Co	ode: 17103	SUMMER– 15 EXAM 3		lo: 4/12	
Que.	Sub.		Model Ans	wer	Marks	Total
No.	Que. e)	Distingu	ish between strong electroly	te and weak electrolyte.		Marks
		_				2
		Sr.No.	Strong electrolyte	Weak Electrolyte		2
		1.	Electrolyte which is highly ionized in solution is known as strong electrolyte.	Electrolyte which is weakly ionized in solution is known as weak electrolyte.	1 mark each	
		2.	They have high degree of ionization.	They have low degree of ionization.		
		3.	e.g.strong acids – HCl, HNO ₃ Strong bases – KOH, NaOH	e.g. Weak acids CH ₃ COOH, H ₂ CO ₃ , weak base like NH ₄ OH		
		4.	Produces more number of ions.	Produces less number of ions.		
		(Note : o	consider any two points)			
	f)	Define E	CE. State the relation betwe	een ECE and CE.		2
		of an electric of an electric of an electric of an electric of a second.	ctrolyte is defined as the amo at electrode by the passage Dr It is the weight of substan	Electrochemical equivalent ount of substance deposited or e of 1 ampere current for 1 nce deposited at the electrode d through electrolyte solution	1	L
		coulombs substance equivaler	s required to liberate or de		1	
	g)	, i i i i i i i i i i i i i i i i i i i	e colour of copper sulphate electrolysis using platinum o	solution turns to colourless electrodes?		2
		solution. on the su anode wh of this	The Cu ⁺⁺ ions (blue) present inface of cathode & OH ^{$-$} are nile H ⁺ and SO ₄ ²⁻ ions remain	nce does not dissolve into the in the solution are discharged discharged on the surface of ns in the solution. As a result $CuSO_4$ solution is slowly n.	2	_

Subject Code: 17103

Page No: 5 /12

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
1.	h)	 Why all ores are minerals but all minerals are not ores? Explain with example. Mineral: - A naturally occurring substance present in earth's crust which contains metal in the free or combined state is known as mineral. 	1/2	2
		Ore: - A minerals from which the metal can be extracted economically is known as ore. Clay and bauxite are two minerals of aluminium but aluminium can be profitably extracted only from bauxite not from clay, hence bauxite is an ore while clay is mineral of aluminium.	1⁄2 1	
	i)	Give <u>two purposes</u> of making an alloy.		2
	-,	 The purposes of making an alloy: Improve hardness of metal Lower the melting point Increase the tensile strength Increase corrosion resistance To get good casting Modify colour Reduce malleability & ductility Modify chemical activity 	1 mark each	2
	j)	Give composition of Woods metal.		
		Composition:		
		Bi=50%	1/2	2
		Pb = 25%	mark each	
		Sn = 12.5%		
		Cd = 12.5% Define Pigment and give two examples.		
	k)	 Pigment: The colouring matter used in plastics which imparts resistant to the action of sunlight & beautiful shades of colour is called as pigment. Examples: (any two) Organic dyestuffs & inorganic pigments like red lead, cobalt blue, and chrome green. 	1 ½ mark each	2

Subject Code: 17103

Page No: 6/12

Que.	Sub.		Maulia	Total
No.	Que.	Model Answers	Marks	Marks
1	1)	 Write <u>two drawbacks</u> of natural rubber. Drawbacks of Natural (Raw) Rubber:- 1) During summer, the raw rubber becomes soft & sticky while in cold weather it becomes hard & brittle. 2) Low tensile strength. 3) It is too weak to be used in heavy duty operation. 4) Large water absorbing capacity. 5) On stretching it undergoes permanent deformation. 	1 Mark each	2
2.		 6) Affected by solvent like gasoline, benzene, carbon tetrachloride, vegetable oils etc. 7) Tarnished in air due to oxidation as result, its durability is considerably decreases. Attempt any four of the following: 		16
2.	a)	Write orbital electrtonic configuration of ${}_{9}F^{19}$, ${}_{15}P^{31}$, ${}_{24}Cr^{52}$, ${}_{20}Ca^{40}$.		4
		${}_{9}\mathbf{F^{19}:} 1s^2, 2s^2, 2p^5$	1	
		$_{15}\mathbf{P^{31}}: 1s^2, 2s^2, 2p^6, 3s^2, 3p^3$	1	
		${}_{24}\mathbf{Cr}^{52}$: 1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ⁶ , 4s ¹ , 3d ⁵	1	
		${}_{20}\mathbf{Ca}^{40}: 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2$	1	
	b)	Describe the formation MgO molecule with diagram and name the type of bonding.		4
		Explanation:- In the formation of magnesium oxide two electrons are transferred from magnesium atom to oxygen atom. By the loss of 2 electrons it acquires +2 charges (Mg ⁺⁺) & attains stable configuration like Ne (2, 8). Oxygen atom acquires -2 charges by the gain / takes of 2e ⁻ s from magnesium atom & attain stable configuration like Neon (2, 8). These two equal & oppositely charged ions (Mg ⁺⁺ & O) combine together by electronstatic force of attraction & form neutral MgO molecule.	1	

Subject Code: 17103

Page No: 7 /12

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.	b)	$Mg + 0 \longrightarrow Mg^{++} [20] \longrightarrow MgO$ $2, 8, 2 \qquad 2, 6 \qquad 2, 8 \qquad 2, 8 \qquad Magnesium$	2	
		Lends 2 Gains 2 Neon Neon oxide molecule electrons electrons confi. confi. Type of bonding is Electrovalent Bond	1	
	c)	If atomic number and atomic mass number of an element is 11 and 23 resp. Write number of protons, neutrons and electrons each.		4
		Given: Atomic number (Z) : 11	1	
		Atomic mass number (A) : 23		
		1) Number of protons (p): $Z = p = 11$	1	
		2) Number of neutrons (n): $A - Z = 23-11 = 12$	1	
		3) Number of electrons (e): $Z = p = e = 11$	1	
	d)	Explain Faraday's first law of electrolysis and derived its mathematical expression.		4
		Faraday's first law of electrolysis: This law states that the weight of a substance liberated or deposited at the electrode is directly proportional to the quantity of electricity passed through the electrolyte solution.	1	
		Explanation: Let W be the amount of substance deposited or liberated at the electrode. Let Q coulombs of electricity passed through the electrolyte solution.	1	
		Then, according to Faraday's First law we have,		
		W $\dot{\alpha}$ Q But Q = c x t		
		Where, c– current in ampere	2	
		t – time in second		
		Q – number of coulombs		

Subject Code: 17103

Page No: 8/12

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
2.	d)	Therefore, $W \dot{\alpha} c x t$		
		W = z c t		
		Where Z is constant known as electrochemical equivalent (ECE).		
	e)	Give any four assumptions of Arrhenius theory of ionisation. 1. The molecules of an electrolyte when dissolved in water split up into two kinds of charged particles, positively charged particle known as cation, negatively charged particle known as anion.		4
		2. Cations are metallic radicals obtained by lose of electrons from metallic atoms. Anions are non-metallic radicals obtained by gain of electrons from non-metallic atoms or groups of non-metals.	1 mark each	
		3. In solution, total numbers of cations (positive charges) is equal to the total number of anions (negative charges) & hence the solution as a whole is electrically neutral.		
		4. The cations & anions present in the solution reunite together forming the original electrovalent compound. Therefore it is reversible type of process.		
		e.g NaCl \rightarrow Na ⁺ + Cl ⁻		
		5. The number of positive or negative charges on the cations or anions corresponds to the valency of the element or radical from which yhe ion is derived.		
	f)	Explain with neat diagram the process of electroplating of silver.		4
		Diagram:		
		Object to be plated (cathode) Electrolyte K[Ag(CN) ₂]	1	

Subject Code: 17103

Page No: 9/12

Que. No	Sub. Oue	Model Answer	Marks	Total Marks
<u>No.</u> 2.	Que. f)	Process: 1. Electroplating of silver on iron – spoon is carried out in a rectangular tank of steel. 2. Iron spoon, which is to be electroplated, is cleaned thoroughly by boiling with caustic soda in order to remove the grease & dirt. 3. Further it is washed with water until free from caustic soda & carefully polished. 4. The iron spoon is then made as cathode. 5. The anode consists of pure silver metal plate. The anode & cathode both are suspended in the electrolyte in the cell of potassium argento-cyanide K[Ag(CN) ₂]. 6. on passing the direct electric current at the applied voltage, the iron spoon gets plated with a smooth & brighter deposit of silver. Silver anode gets slowly dissolved in solution by giving Ag ⁺ ions. Ionisation $K[Ag(CN)_2 \downarrow \ \downarrow \ K^+ + [Ag(CN)_2]]$ $To \qquad \downarrow \qquad From$ $Ag^+ + e^- \rightarrow Ag \downarrow \leftarrow Ag^+ + 2CN^- \leftarrow Ag \rightarrow Ag^+ + e^-$ $Cathode H^+ + OH^- anode \ \downarrow^$ H_2O	1	Marks
3.		Attempt any four of the following:		16
	a)	Define Tensile strength, Machinability, Soldering and castability.		4
		 Tensile Strength: - Is the ability to carry a load without breaking. Or A tensile strength of a metal is its ability to resist pull without breaking 	1	
		 Machinability: - Is the property due to which a material can be easily cut by cutting tools to produce a desired shape & surface finish on its surface. Soldering: - A method of joining the metals surfaces by introducing a molten non-ferrous alloy with melting point below 400°C between them, is known as soldering. 	1	

SUMMER- 15 EXAMINATION Subject Code: 17103

Page No: 10/12

Que.	Sub.	Model Answer	Marks	Total
No.	Que.			Marks
3.	a)	 Castability:- The process of pouring molten metal into a mould & allowing it to solidify is known as casting and the ability of metal to get casted is called as castability. 	1	4
	b)	Name and explain the process used for concentration of ZnS ore.		
		The process used for concentration of ZnS ore is Froth Floatation Process.	1	
		Compressed air Sulphide ore froth Sulphide ore Water + Pine oit OOOOOOO Gangue Settling basin	1	
		Process :		
		In this process, the powdered sulphide ore is mixed with water & pine oil. The whole mixture is then stirred vigorously by passing compressed air. The oil forms a froth with air bubbles. The sulphide ore particles get attached with the Froth & Floats on the surface, while the gangue or earthy impurities are wetted by water & sink to the bottom of the tank. The floating froth is then skimmed off into settling basins from where by filter press a concentrated ore is recovered.	2	4
	c)	Define alloy. Explain fusion method of preparation of allloy.Alloy: It is defined as homogeneous mixture of two or more elements one of which must be metal.	1	-
		 Process: 1) The component metal having higher M.P. is melted first in a crucible & the other having lower melting points are added to in it. 2) The molten metals are at high temp & hence may react with atmospheric oxygen to form oxide. So in order to prevent oxidation the molten mass is covered with charcoal powder. 	2	

Subject Code: 17103

Page No: 11/12

Que. No.	Sub. Que.	Model	answers	Marks	Total Marks
3.	<u>c</u>) d)	uniform alloy. 4) The molten mass is then all alloy. Refractory lined crucible Alloy components in proper proportions	tirred using graphite rods to get lowed to cool which gives required on layer to doxidation Molten mixture Molten mixture ening and thermosetting plastics.	1	4
		Thermosoftening plasticsi) They are formed by addition plymerisation.ii) Linear long chain polymers with limited cross links.iii) Smaller molecular weight.iv) Softened on heating & reshaped & reused.v) Reclaimed form wastes.vi) Intermolecular bonds are weaker.vii) Softer, weaker, less brittle.viii) Soluble in organic solvents.xi) Polyethylene, Polystyrene PVC.(Note: cosider any four points)	Thermosetting Plasticsi) They are formed by condensation polymerization.ii) Three dimensional structure.iii) Higher molecular weight.iv) Do not soften on heating & reshaped & reused.v) Can not be reclaimed from wastes.vi) Strong covalent bonds are joined.vii) Harder, stronger & more brittle.viii) Insoluble in organic solvents.xi) Bakelite, Polyesters, silicone Plastics.	1 mark each	

Subject Code: 17103

Page No: 12/12

Que.	Sub.	Model answers	Marks	Total
No.	Que.		IVIALKS	Marks
3.	e)	What is vulcanisation of rubber? Explain why it is necessary? Vulcanization of rubber:- "The process which involves addition of sulphur or H ₂ S to crude (raw) natural rubber at high temp & pressure to improve properties of crude natural rubber is called vulcanization." Vulcanisation of rubber is necessary for i) Stiffening of rubber.	2	4
		ii) Preventing intermolecular movement or sliding of rubber		
		springs.		
		iii) To improve the hardness, abrasion resistance, chemically	1	
		resistant.	mark	
		 iv) Makes the rubber tough, strong, usable from - 40 °C to100 °C v) To improve electrical insulation property. 	each	
		(Note: Consider any two points)		
	f)	Define Thermocole. Explain its preparation, properties and		
		application.		
		Thermocole: It is foamed plastic.	1	4
		Preparation: "Thermocole is a foamed plastic obtained by blowing	1	
		compressed air into molten polystyrene or polyurethane is known as	1	
		thermocole".		
		Properties :- (any one)	1	
		1) It is soft, spongy, porous, low density.		
		2) Its thermal & electrical conductivity is low.		
		3) It is quite shock - proof.		
		4) It is quite strong through extremely light.		
		5) It is chemically inert & resists ageing.		
		6) It can be used upto 55° C.	_	
		Uses :- (any one)	1	
		1) As a thermal insulators in refrigerator, cold-storage, ice-boxes		
		& cold rooms etc.		
		2) As good packing material for delicate electric & electronic		
		equipment.		
		3) As decorative material for decoration.		
		4) As protecting screen in radars at the airports.		