

SUMMER – 14 EXAMINATION <u>Model Answer</u>

Subject Code: 17103

Page No: 1/12

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
		 Important Instructions to examiners: The answers should be examined by key words and not as word-to-word as given in the model answer scheme. The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate. The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills). While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn. Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer. In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding. For programming language papers, credit may be given to any other program based on equivalent concept. 		

Subject Code: 17103

SUMMER – 14 EXAMINATION

Page No: 2/12

Que.	Sub.		Model	Answer		Marks	Total Marka
No.	Que.	Attempt any Nin	e of the followir	lg.			Marks 18
	 a) Define atom .Name the sub atomic particles. Atom: It is the smallest particle of an element which can not be further subdivided & which can take part in all chemical changes. Sub atomic particles: Electron ,Proton, Neutron 					1	2
	b)	State the number	of subshells in	K , L, M	l, N shells.		2
	,	Shell	Number of su	bshells	Sub Shells	1/2	
		K (n=1)	1		1s	Mark	
		L (n=2)	2		2 s , 2p	each	
		$\frac{M (n=3)}{N (n=4)}$	3		3s, 3p, 3d		
		N (n=4)	4		4s, 4p, 4d. 4f		
	c) d)	show with hydrometry $C1 + e^{-\frac{gain of}{(2,8,7)}}$	gen. $2 \xrightarrow{1e} C1^{-}$ (2,8,8) e electron from a corine is electron with hydrogen : 0) nother a egative. C o-valer		1 ts 1	2
	u)	Strong electroly			Electrolytes		2
		1) Electrolytes w ionized in solution have high degree are known as stro- electrolytes.	on & hence of ionization	weakly hence l	trolytes which are ionized in solution & nave low degree of ion are known as weak lytes.	1Mark each	
		2) They have hig ionization.	h degree of	2) The ionizat	y have low degree of ion.		
		3) They have hig	h electrical	-	y have low electrical		
		conductivity.	1 1101	conduc		_	
		L A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	ds = HC1	4) e.g.	Weak acids –		
		4)e.g. Strong acie HNO ₃ Strong bas NaOH		-	OOH, H ₂ CO ₃ , Weak		

Que.	Sub.	Made		Marka	Total
No.	Que.		el Answer	Marks	Marks
1.	e)	What is the affect of temperat At higher temperature, molecule the velocity of molecules increa electrostatic force of attraction b ions.Hence degree of ionization temperature.	2	2	
	f)	Define electrochemical equiva Electrochemical equivalent: E electrolyte is defined as the amo liberated at an electrode by pass second. Electrochemical equivalent of a amount of substance deposited of passing 1 coulomb of electricity Unit: gms/ coulomb	1	2	
			L		
	g)	A solution has pH = 6.45. Calc	culate the hydrogen ion		2
		concentration. Given: $pH = 6.45$. [H +] = ? Solution: $pH = -\log_{10} [H^+]$	1		
		$\begin{array}{rcl} 6.45 & = & -\log_{10} \ [\text{H}^{+}] \\ [\text{H}^{+}] & = & \text{antilog} \ (-6.45) \end{array}$			
		$[H^+] = 3.5481 \times 10^{-7} \text{ gr}$	n ions/ lit.	1	
	h)		2		
		Calcination	Roasting		
		1)Process of heating the ore	1)Process of heating the ore		
		strongly in absence of air	strongly in excess of air below		
		below its M.P. 2)This process is used to	its M.P. 2) This process is used to		
		convert carbonate &	convert sulphide into oxide &		
		hydroxide into their oxides	sulphate.	1	
		3)Purpose is to remove the	3)Purpose is to remove	mark	
		moisture & volatile	moisture & oxidation of ore &	each	
		impurities from the ore	the impurities like S,P,As etc.		
		4)In calcination, the mass becomes porous, so that it	4) In roasting, the sulphide ore chemically changed into suitable		
		can be easily reduced to	form (oxides & sulphates) can		
		metallic state.	be reduced to metallic state.		
		5) Process done in hearth of a	5) Process done in hearth of a		
		reverberatory furnace when	reverberatory furnace when the		
		the doors are kept closed.	doors are kept opened.		
		(Any two points)			
					<u> </u>

Que.	Sub.		A		Total
No.	Que.	Model	Answer	Marks	Marks
1.	i)	 Define Alloy.Name two methods of preparing alloy. Alloy :- It is defined as homogeneous mixture of two or more elements one of which must be a metal. Methods of preparing alloy. Fusion Compression 			2
	j)	 Why duralumin sheets are used Duralumin sheets possess followin 1. Light in weight, tough. 2. Corrosion resistant. 3. Easily castable. 4. Strong as mild steel with generative strong as mild steel with generative strong is used to these properties it is used to the strong the strong s	ng properties: good tensile strength.	1 mark each	2
	k)	Name four synthetic rubber. 1. Buna – S or SBR 2. Buna – N 3. Butyl rubber 4. Neoprene 5. Thiokol (Any Four names)			2
	1)	Write two properties of glass we property. Properties 1.Low Thermal conductivity	Uses 1.Used as thermal insulating material in domestics & industrial appliances such as motors, ovens, refrigerators.	1 mark each	2
		 2.Resistant to chemicals 3. Average diameter is 0.00005 cm 4.Sound-proof & low electrical conductivity 5.Low density (Any two properties and related 	 2.Used for filtering hot, corrosive liquids like acids, alkali etc 3. In air filters as a dust filtering material. 4. Used as sound absorber and electrical insulation. 5. Manufacturing fiber glass by reinforcing with plastic resins. uses : 1 mark each) 		

Subject Code: 17103

Page No: 5 /12

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
2.	Que.	Attempt any four of the following.		16
	a)	 Write four postulates of Bohr's atomic theory. 1. An atom consists of a dense positively charged central part called as Nucleus. 2. The electrons revolve around the nucleus in fixed circular paths are called orbits or shells. The electrostatic force of attraction between nucleus & electron balanced by the centrifugal force. Hence the electrons do not fall into the nucleus and therefore atom remains stable. 3. Electron can rotate only in certain permitted orbits known as stationary states. 4. Each stationary state is having definite amount of energy called energy levels or orbits or shells. 5. Energy levels are named as K,L,M,N for n= 1,2,3,4 6. Electrons in the energy level nearest to the nucleus have lower energy while those are at greater distance from the nucleus have higher energy. 7. As long as the electron stays in the same energy level, the energy remains constant. The energy of an electron can change only when it moves from one level to another. When the excited electron jumps from lower to higher_energy level, it absorbs or gain energy. Whereas the excited electron jumps from higher to lower_energy level, it emits or loses energy. 8. The angular momentum of an electron(mvr) must be an itegral multiple of h/2π. Hence mvr = nh/2π 	1 mark each	4
		(Any four points can be considered for four marks)		

Subject Code: 17103

Page No: 6/12

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
2	b)	Name the type of bonding in water molecule and explain its formation.		4
		Type of bonding : Single co-valent bonding. Formation of Water Molecule:	1	
		H $(Z = 1)$ $1S^{1}$ (1) O $(Z = 8)$ $1S^{2}$, $2S^{2}$, $2P^{4}$ $(2, 6)$ Water molecule (H ₂ O) contains two atoms of hydrogen & one atom of oxygen. Each hydrogen atom is in short of 1 electron of complete its	1	
		duplet & oxygen atom is in short of 2 electrons to complete its octet. In the formation of water molecule, oxygen atom completes its octet by sharing one electron each with two hydrogen atoms. Similarly, each hydrogen atom complete its duplet by sharing one electron with oxygen atom. Thus, two separate single co-valent bonds are formed between hydrogen & oxygen atoms.	1	
		Hx + \cdot 0 \cdot + xH \longrightarrow H \times \cdot	1	
	c)	Write the orbital electronic configuration of the following elements: i) 19 K ³⁹ ii) 24 Cr ⁵² iii) 10 Ne ²⁰ iv) 16 S ³²		4
		i) 19 K ³⁹ 1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ⁶ , 4s ¹	1	
		ii) 24 Cr ⁵² $1s^2$, 2 s ² , 2 p ⁶ 3 s ² , 3 p ⁶ , 3d ⁵ , 4 s ¹	mark each	
		iii) 10 Ne ²⁰ 1s ² , 2s ² , 2p ⁶ iv) 16 S ³² 1^{2} , 2s ² , 2p ⁶ 1^{2} , 2s ² , 2p ⁶ 1^{2} , 2s ² , 2p ⁶	Calli	
		18) 16 S $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^4$		
	d)	Explain the process of electroplating of an iron spoon with silver.		4
	~,	Object to be plated (cathode) Electrolyte K[Ag(CN) ₂]	1	

Que.	Sub.	Model Answers	Marks	Total
<u>No.</u> 2.	Que.	1. Electroplating of silver on iron – spoon is carried out in a rectangular steel tank. 2. Iron spoon, which is to be electroplated, is cleaned by boiling with caustic soda in order to remove the grease & dirt. 3. Further it is washed with water & carefully polished. 4. The iron spoon is then made as cathode & the anode consists of pure silver metal plate. 5. The anode & cathode both are suspended in the electrolyte potassium argento-cyanide K[Ag(CN) ₂] in the cell. 6. On passing the direct electric current, at the applied voltage, the iron spoon gets plated with a silver. Silver anode gets slowly dissolve in solution by giving Ag ⁺ ions. The schematic representation is : Ionisation: K[Ag(CN) ₂] Ag ⁺ + 2CN ⁻ At Cathode: Ag ⁺ + e ⁻ Ag ⁺ + e ⁻	3	Marks
	e)	Ag Ag + e Define electrolytic dissociation.State Arrhenius theory of electrolytic dissociation: - The process of splitting up of an electrovalent compound (Electrolyte) into its ions when dissolved in proper solvent like water is called as electrolytic dissociation. Arrhenius theory of electrolytic dissociation. 1) The molecules of an electrolyte when dissolved in water, split up into two kinds of charged particles, positively charged particle known as cation, negatively charged particle known as anion. 2) Cations are generally metallic radicals obtained by loss of electrons from metallic atoms, anions are generally non-metallic radicals obtained by gain of electrons from non-metallic atoms or groups of non-metals. 3) In solution, the total numbers of cations (positive charges) is equal to the total number of anions (negative charges) & hence the solution as a whole is electrically neutral. 4) The cations& anions present in the solution reunite together to form original electrovalent compound, hence it is reversible process. e.g. NaCl \rightarrow Na ⁺ + Cl ⁻ 5) The number of positve or negative charges that can be present on cation or anion depends upon valency of parent atom. (Any 3 points : 1 mark each)	1 1 mark each	4

Subject Code: 17103

Page No: 8/12

Que.	Sub.		1.6.1	Total
No.	Que.	Model Answer	Marks	Marks
Que. No. 2. 3.		Model AnswerA current of 2.5 amperes is passed through a solution ofsilver nitrate for half an hour. What is the mass of silverdeposited on cathode? (Given: Equivalent weight of Ag=108)Given: $c = 2.5$ amperes $t = Half$ an hour= 30 minutes = 1800 secondsEquivalent weight of Ag(Chemical equivalent) = 108Step I]C.E. $= E.C.E.(z) \ge 96500$ $z = 108/96500$ $z = 0.001119 \text{ g/c}$ Step II]From First law of Faraday, we have,W $= z \ c t$ $= 0.001119 \ x 2.5 \ x 1800$ W $= 5.036 \ g.$ Attempt any four of the following:Define the term:i)Tensile strengthii) Hardnessiii) Ductilityiv) Solderingi)Tensile Strength : Tensile Strength is the ability of metal to carry a load without breaking.ii)Tensile Strength : Tensile Strength is the ability of metal to carry a load without breaking.ii)Ductility: Ductility is the ability of a metal due to which it can be stretched and converted into thin wire without breakingiv)Soldering :- The process of joining two metal surfaces by introducing a non ferrous alloy having melting point below 400° c in between them is called as soldering.	Marks	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
3.	b.	Explain with diagram electromagnetic separation method		4
		Principle- This method is based upon magnetism Process –In this process powdered ore is allowed to fall through hopper on leather or rubber belt which is constantly moving over two rollers one of which is electromagnetic in nature. The magnetic particles present in the ore when come in contact with the magnetic field of the electromagnetic roller they get attracted towards the roller and hence get collected near the roller, while non magnetic particles present in the ore are not attracted towards the roller hence fall away from the roller. e.g. 1.concentration of magnetic ore like Haematite which	2	
		contains non magnetic impurities 2. concentration of non magnetic ore like Tinstone which contains magnetic impurities	1	
		Powdered ore Leather or Rubber belt Hopper Hon magnetic roller Magnetic particles Hon magnetic particles	1	
	c.	Give the composition, properties and uses of babbit metal Composition:		4
		Sn = 88% Sb = 8% Cu =4% Properties:	2	
		 i) It is silvery white, soft metal alloy. ii) It has very low coefficient of friction. iii) It has very high corrosion and wear and tear resistance. iv) It can take high polish. v) It does not tarnish easily vi) It distributes the load uniformly. 	1	
		 Uses : i) It is used for making engine bearing. ii) It is also used as a common bearing metal in cast iron boxes. (Any two properties & two applications) 	1	

Subject Code: 17103

Page No: 10/12

Que. No.	Sub. Que.	Model	Answer	Marks	Total Marks
3	d.	Give four properties and its relat	ted applications of rubber		4
		Properties of rubber	Related application		
		1. Elasticity	For preparation of rubber bands, balloons, tubes for all vehicles		
		2 .High abrasion resistance	For preparation of tyres of all vehicles, shoe sols & shoe heels, conveyer belts, floor tiles ,rubber mats	1	
		3. Shock absorbing	For preparation of sports goods, toys, helmets, goggles, for mounting heavy machines, to reduce noise & vibrations	mark each	
		4. Excellent Electrical insulator	For insulation of electrical wires and cables, For hand gloves of electrician		
		5 .High Chemical resistance	Rubber lined tanks are used for storing corrosive chemicals rubber hoses are used for transmission of corrosive chemicals ,rubber gaskets & seals are used for sealing.		
		6 .Hardness	Rubber gaskets are used for sealing pressure cookers, refrigerators ,ovens, cabinet doors, autoclaves etc.		
		7 .Excellent thermal & sound insulator	Sponge insulator in auditoriums, theaters, in different filters.		
		8. Airproof	For preparation of balloons, tubes, air pillows, cushions, mattresses.		
		9.Waterproof	For preparation of rain coats.		
		(Any four properties & related a	pplications of rubber)		

Subject Code: 17103

Page No: 11/12

Que. No.	Sub. Que.	Mod	el Answer	Marks	Total Marks
3	e.	Differentiate between thermo plastics.	osoftening and thermosetting		4
		Thermo softening plastics	Thermo setting plastics		
		1 The plastics who possess	1 The plastics who possess three		
		linear long chain structure	dimensional complicated structure		
		without cross linkages are	with cross linkages are called as		
		called as thermo softening	thermo setting plastics	1	
		plastics		mark	
		2 They are formed by	2 They are formed by	each	
		addition polymerization	condensation polymerization		
		3 They consist of polymers	3 They consist of polymers of		
		of smaller molecular weight	higher molecular weight		
		4 They are softer, weaker &less brittle	4 They are harder, stronger & more brittle		
		5 They have low tensile	5 They have high tensile strength		
		strength	5 They have high tensile strength		
		6 Their inter molecular	6 Their inter molecular bonds are		
		bonds are weak	strong covalent bonds		
		7 They soften on heating	7 They do not soften on heating		
		8 They are soluble in	8 They are insoluble in organic		
		organic solvent	solvent		
		9 They can be reshaped and	9 They cannot be reshaped and		
		reused	reused		
		10 They can be reclaimed	10 They cannot be reclaimed		
		from the waste	from the waste		
		11 Examples- Polythene,	11 Examples- Bakelite, Polyester,		
		Polystyrene, PVC, Teflon	Nylon66, Urea		
			formaldehyde,Silicon plastic		
		(Any four differences)			
		(Any rour unreferices)			

Subject Code: 17103

Page No: 12/12

Que.	Sub.	Model Answer	Marks	Total
No.	Que.		Marks	Marks
3	f.	How is thermacole prepared? Write two uses and two properties of thermacole Preparation :- Thermacole is prepared by blowing air through molten poly styrene or poly urethrane plastics Properties :- (Any Two)	2	4
		 It is light in weight It is spongy, porous & has foam like structure. 		
		3) It has low thermal & electrical conductivity.	1/2	
		4) It is resistant to chemicals & ageing	mark	
		5) It is quite strong, has low density.	each	
		 5) It is quite strong, has low density. 6) It is waterproof. 7) It absorbs shocks and vibrations. 8) It is stable up to 55° C Applications : (Any Two) 1) It is used for decorative purposes. 2) It is used as ideal packing material for packing glassware, delicate electronic & electrical equipments. 3) It is used as thermal insulator in refrigerators & air conditioners. 4) It is widely used for preparation of various scientific models. 5) It is used for storing ice, ice creams & medicines. 7) It is used as a float for swimming. 	^{1/2} mark each	