

WINTER-17 EXAMINATION

Subject Name: Basic Physics

Model Answer

Subject Code:

17102

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q. N.		Scheme
1	a)	Attempt any NINE of the following: Why in gases, Cp is greater than Cv? Proper explanation C_v is the specific heat of gas at constant volume. It is utilized only to increase the temperature of the gas only. And C_p is the specific heat of a gas at constant pressure. But it is utilized by two way i.e. To increase the temperature of the gas and to maintain constant pressure (i.e. increase in volume) Therefore C_p is greater than C_v .	18 2 2
	b)	Therefore C_p is greater than C_v .State the pressure depth relation. Give the meaning of all symbols in it.EquationSymbol meaning $P= h\rho g$ Where, $P=$ Pressure $h=$ height of the column $\rho=$ density of given liquid $g=$ acceleration due to gravity	2 1 1

	~ .	WINTER- 17 EXAMINATION					
	Sub	ject Name: Basic Physics <u>Model Answer</u> Subject Code: 1710	2				
). 10.	Sub Q. N.	Answer	Marking Scheme				
1	c) Define time period of a wave. State the values of time period of minute hand and hou hand of a clock.						
		Definition	1				
		Values	1				
		Period of wave: The time taken by a particle to complete one oscillations in the wave is called period of wave.					
		Values of time period:					
		One minute hand = 60 sec One hour hand = $60 \text{ min} = 60 \text{ x} 60 = 3600 \text{ sec}$					
		One nour hand $= 60 \text{ mm} = 60 \times 60 = 5000 \text{ sec}$					
	d) Define the terms – Molecular range and Sphere of influence.						
	Each Definition						
		Molecular range: The maximum distance upto which cohesive force can act is called as					
		molecular range.					
		Sphere of influence: The imaginary sphere, surrounding a molecule in which force of					
		attraction is present is called the sphere of influence of that molecule. OR					
		The imaginary sphere drawn with molecule as a center and molecular range as a radius is					
		called as sphere of influence.					
	e)	Convert 55 °C to °F.	2				
	0)	Formula	1				
		Answer with unit	1				
		$C = \frac{F - 32}{1.8}$					
		F = (1.8 x C) + 32					
		$F = (1.8 \times 5) + 32$ $F = (1.8 \times 55) + 32$					
		$F = 131^{0}$					
		$55^{0} C = 131^{0} F$					
	f)	State and explain Hooke's Law of elasticity. Statement	2				
		Explanation	1				
		Hooke's Law	1				
		Within elastic limit, stress is directly proportional to strain.					
		Therefore, stress α strain					
		Stress = constant x strain,					
		Therefore modulus of elasticity = stress/ strain					

17102

	Subject Name: Basic PhysicsModel AnswerSubject Code:			
Q. No.	Sub Q. N.	Answer	Marking Scheme	
1	g)	The refractive index of material of glass prism 1.51. Calculate the angle of refraction if the angle of incidence is 45°. Formula Answer with unit Given: Angle of incidence = 45° Refractive index (μ) = 1.51 Angle of refraction =? $\mu = \frac{\sin i}{\sin r}$ sin r = sin i / μ = sin (45) / 1.51 sin r = 0.4682 r = sin ⁻¹ (0.4682) r = 27.92°	2 1 1	
	h)	 State any two characteristics of stationary waves. Any two characteristics Characteristics : It is superposition of two progressive waves moving in opposite direction in a medium. There is no transfer of energy in a medium. Nodes and antinodes are formed successively. Nodes are the points on the wave whose displacement is zero. Antinodes are the points on the wave whose displacement is maximum. The distance between two successive nodes or antinodes is λ/4. 	2 2	
	i)	Calculate the viscous force acting on a raindrop of diameter 0.5 mm travelling with constant velocity of 6 m/ sec through air if the coefficient of viscosity of air is 1.8 x 10 ⁻⁵ N-sec / m ² . Formula with substitution Answer with unit	2 1 1	

	Sub	bject Name: Basic Physics Model Answer Subject Code:	
Q. No.	Sub Q. N.	Answer	Marking Scheme
1	i)	Given: F =? D = 0.5 mm r = 0.25 x 10 ⁻³ m V = 6 m/s $\eta = 1.8 x 10^{-5} \text{ Ns/m}^2$ We have $F = 6\pi\eta \text{rv} = 6 x 3.14 x 1.8 x 10^{-5} x 0.25 x 10^{-3} x 6$ $F = 50.868 x 10^{-8} \text{ N}$	
	j)	 State any two applications of radiation. Any two application White or light coloured clothes are preferred in summer. Heat radiators in car, machines are painted black. Aeroplanes and ships are painted white. High absorbing power of water vapour is a natural gift. The polished surface of space craft reflect most of the heat radiated from sun. Base of the cooking utensils is made black. Inactivation of HIV by application of heat radiations. Teapots has bright shining surface. 	2 2
	k)	 Define bulk modulus of elasticity, poisson's ratio. Each definition Bulk Modulus(K): Within elastic limit the ratio of volume stress to volume strain is called Bulk modulus. Poisson's ratio: It is defined as the ratio of lateral strain to longitudinal strain. 	2 1
	1)	Derive the relation $\mathbf{V} = \mathbf{n} \lambda$ for wave motion where all symbols have usual meaning. Derivation We have Velocity =Distance covered /Time taken When disturbance travels through one full wave then, Distance covered = Wavelength = λ & Time taken = Period = T \therefore Velocity = Wavelength/Period $V = \lambda/T$ But $1/T = \mathbf{n}$ \therefore $\mathbf{V} = \mathbf{n} \lambda$ V is velocity n is frequency λ is wavelength.	2 2

		WINTER-	- 17 EXAMINATION			
	Sub	ject Name: Basic Physics <u>N</u>	<u>lodel Answer</u>	Subject Code:	17102	
Q. No.	Sub Q. N.		Answer		_	Marking Scheme
2	a)	Attempt any FOUR of the following: Derive the expression for velocity of Diagram Expression		ance tube experi	nent.	16 4 1 3
		End Correction				
		A metal tube of diameter D is immerse made to vibrate and held at mouth of the that loud sound is heard. Fix the positive calculate end correction. End correction, $e = 0.3 d$ Actual length of vibrating air column Corrected length of vibrating air column But $L = \lambda / 4$ Therefore $\lambda / 4 = e + 1$ Therefore $\lambda / 4 = e + 1$ Therefore $\lambda = 4 (e + 1)$ Velocity of sound in air is given by, $V = n \lambda$ V = n x 4 (e + 1) = 4n (0.3 D + 1) Therefore $V = 4nL$ This is the expression for velocity of so	the as shown in figure. Son of tube where loud s = 1 an L = e + 1 = (0.3 D) +	The metal tube is sound is heard. It i -1	adjusted such s necessary to	

	WI	NTER- 17 EXAMINATIO	N				
Su	bject Name: Basic Physics	Model Answer	Subject Code:	17102			
. Sub		Answer			Marking		
o. Q. N.					Scheme		
2. b)	Determine the force required to stretch a steel wire to 1.5 times its original length if the area of cross section is 1.2cm ² and Young's modulus for steel is 2 x 10 ¹¹ N/ m ² .						
	Formula with substitution Answer with unit				2		
	Given:				2		
	F = ?						
	$A = 1.2 \text{ cm}^2 = 1.2 \text{ x} 10^{-4} \text{ m}^2$						
	$Y = 2 \times 10^{11} \text{ N} / \text{m}^2$						
		(\mathbf{L}) is set (1) is CILLE	•.				
	Consider original length of wire	(L_1) is unit (1) in S.I.On	lt.				
	$L_2 = 1.5 L_1 = 1.5 x 1$						
	$L_2 = 1.5$ S.I. Unit	.					
	Elongation produced $(1) = L_2 -$	L_1					
	1 = 1.5 - 1						
	l = 0.5 m						
	We have, $Y = FL_2 / Al$						
	$\mathbf{F} = \mathbf{Y}\mathbf{A}\mathbf{l} \ / \ \mathbf{L}_2$						
	F = (2×10^{1})	¹) x (1.2 x 10 ⁻⁴) x (0.5) /	(1.5)				
	$\mathbf{F} = 8 \times \mathbf{10^6} \ \mathbf{N}$	[
	Note: Any relevant answer using some other standard values may be considered.						
c)	 i) Define velocity gradient. Also state its MKS & CGS unit. ii) Distinguish between streamline flow and turbulent flow (any two points) Definition 						
	Each unit				$\frac{1/2}{2}$		
	Any two points				2		
	i) Velocity gradient: It is defined distance from fixed layer.	as the ratio of change in	velocity of the layer	to change in			
	MKS unit is per second OR 1	/ sec					
	CGS unit is per second OR 1/	sec					
					06/1		

Marking Scheme
4 2 2

	C.,L		WINTER- 17 EXAMINATION	Subject Code:	17100		
	Sub	ject Name: Basic Physics	<u>Model Answer</u>	Subject Code:	17102		
l. Io.	Sub Q. N.		Answer			Marking Scheme	
2.	e)	 i) Define acceptance angle & numerical aperture with reference to optical fiber. ii) State any two application of optical fiber. Each definition Any two application 					
		 i) Acceptance Angle (θa): The maximum value of external incident angle for which light will propagate in the optical fiber is called ac acceptance Angle. Numerical Aperture (N_A): The sine of maximum acceptance angle is called as numerical aperture. 					
 ii) Application of optical fiber: 1. Optical fiber in communication: Because of channels. 2. Internet: Optical fiber cables pass on huge a speed. 3. Telephone: Using optical fiber communicat conversations. 4. Used for signaling purpose in military. 5. Used in industrial automation system. 6. To observe internal organs of body in media 7. Used in defenses for confidential communicat communication. 8. Used in cable television. 9. Used for transmission of digital data. 	tion: Because of large bandwest s pass on huge amount of date over communication we can de in military. on system. of body in medical field. ential communications.	ata that it is too with v	very high ve clean				
	f)	 chemical concentration in auto i) State and explain Boyle's la ii) Distinguish between isother Statement and explanation Any two points i) Boyle's law: - For fixed mass pressure is inversely proportion 	aw for gases. ermal presses and adiabat as of a gas, temperature of a			4 2 2	
		Explanation- P α 1/V P = constant x PV = constant Thus at constant temperature, p constant. i.e, P ₁ V ₁ = P ₂ V ₂ = constant i.e, product of initial pressure a volume.	(at constant tempera 1/V t product of pressure and volu	ume of fixed mass of	-		

					17 EXAMINATION		Γ	
	Sub	oject Name:	Basic Physics	<u>Mc</u>	odel Answer	Subject Code:	17102	
ן. 10.	Sub Q. N.				Answer			Marking Scheme
2.	f)	ii) Any ty	wo points					
			ISOTHERMAL PH	ROCESS	ADIABETIC P	ROCESS		
			volume & pressure at constant temperat	-	volume & press changing temper			
			Gas is filled in conductor of heat	a good	Gas is filled in a of heat.	bad conductor		
		r	Transfer of heat take	es place.	There is no trans	fer of heat.		
			Volume changes a slowly	ire made	Volume chang rapidly	es are made		
			Gas obeys Boyle's PV= constant	law i.e.	Gas does not law	obeys Boyle's		
					Here PV $\Upsilon = con$	istant		
]	Expansion of gas tak	kes place	Compression of place	of gas takes		
]	Ex. Boiling of water	•	Ex. Bursting of a	cycle tyre		

	W	/INTER-17 EXAMINATION	J	[]			
Su	ubject Name: Basic Physics	Model Answer	Subject Code:	17102			
. Sub		Answer			Marking		
o. Q. N					Scheme		
3.	Attempt any FOUR of the fol	lowing:			16		
a)	A body performs S.H.M. such				4		
	acceleration at one of the extr the frequency of vibration.	remities is 3.14 m/sec ² . Ca	liculate the time per	iod and hence			
	Each formula				1		
	Each answer with unit				1		
	Given:						
	v = 2 m/s						
	Acceleration = 3.14 m/s^2						
	We have $v = a\omega$						
	Acceleration = $a\omega^2$ =						
	$a\omega^2/a\omega = 3.14$., _					
	$\omega = 1.57$						
	$\omega = 2\pi n$ $n = \omega / 2\pi = 1.57 / (2 \times 3.14)$						
	$n = \omega / 2\pi = 1.57 / (2 \times 3.14)$ n = 0.25 Hz						
		n = 1 / .025					
	$\mathbf{T} = 4 \sec \theta$						
	1 – + 500	~					
b)	Define the terms – free vibrat	ions and forced vibratior	ns. Give one example	e each.	4		
	Each definition				1		
	Each example				1		
	Free vibrations: The vibration equilibrium position and vibrate	es with a natural frequency	v are called free vibrat	tions.			
	Examples: Vibrating tuning for	rk, Concrete bridge, Vibra	tion of air column, etc	2.			
	Forced vibrations : When a boo particle cannot vibrate with its i						
	periodic force. These vibrations	are called forced vibration	ns.				
	Examples: Tuning fork kept or hanging ball, etc.	1 vibrating engine, Concret	te bridge in earth qual	ke, Cricketers			
					10/12		

		V	VINTER- 17 EXAMINATION	J		
	Sub	ject Name: Basic Physics	Model Answer	Subject Code:	17102	
Q. No.	Sub Q. N.		Answer			Marking Scheme
3.	c)	Explain the behavior of the v Diagram Explanation Stress A graph or diagram of stress ar OE Portion is straight line wh wire obeys Hooke's law up to EE' Portion is curved toward increase in stress. In this regio E' if all load is removed then takes place in the wire this is c obtained which obey Hooke's Some portion after the point Y without increase in stress just the plastic flow begins is called	Breaking stress Breaking stress Breaki	 B Elastic limit Yield point Breaking point Set point Ultimate stress Ultimate stress Inderease in strain Inderease in strain Ito strain. Between an on / Expansion / increase axis this shows that strain 	is more, than ny point E and rease in length ght line SE' is train increases	4 2 2
	d)	cosθ cosθ		the angle of contact	for the	4 2 2

Su		WINTER-17 EXAMINATION	l	[]	
	bject Name: Basic Physic	s <u>Model Answer</u>	Subject Code:	17102	
		Answer			Marking Scheme
-	State & explain NewtStatement and explanDefinitionStatement: The viscouti. directly proportionali.e. [F α A]ii. directly proportionali.e. [F α (dv/dx)]Where, η is the coefficCoefficient of viscositedeveloped between twoCalculate the temperat0.6 atmosphere to 36 liftFormula with substitutAnswer with unitGiven: $V_1 = 12$ lit. $T_1 = 150$ °K $P_1 = 0.6$ atmWe have,	on's law of viscosity & hence defination s force (F) developed between two to surface area of liquid layer, (A) to velocity gradient $F \alpha A dv/dx$ $F = \eta A dv/dx$ ent of viscosity of the liquid. y: "Coefficient of viscosity of a lice liquid layers of unit surface area & ure in degree celsius required to chaters at 1.2 atmosphere.	liquid layers is quid is defined as the t unit velocity gradie	e viscous force nt."	_