	WINTER-17 EXAMINATION		
Subject Name: Basic Physics	Model Answer	Subject Code:	17102

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{aligned}
& \mathrm{Q} . \\
& \text { No. }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { Sub } \\
& \text { Q. N. }
\end{aligned}
$$ \& Answer \& Marking Scheme

\hline 1 \& a)

b) \& \begin{tabular}{l}
Attempt any NINE of the following:

Why in gases, Cp is greater than Cv ?

Proper explanation

C_{v} is the specific heat of gas at constant volume. It is utilized only to increase the temperature of the gas only.

And

C_{p} is the specific heat of a gas at constant pressure. But it is utilized by two way i.e. To increase the temperature of the gas and to maintain constant pressure (i.e. increase in volume)

Therefore C_{p} is greater than C_{v}.

State the pressure depth relation. Give the meaning of all symbols in it.

Equation

Symbol meaning

Where, $\mathrm{P}=$ Pressure

$h=$ height of the column

$\rho=$ density of given liquid

$g=$ acceleration due to gravity

 \&

18

2

2

2

1

1
\end{tabular}

\hline
\end{tabular}

WINTER-17 EXAMINATION

Subject Name: Basic Physics
Model Answer
Subject Code:
17102

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
1	c)	Define time period of a wave. State the values of time period of minute hand and hour hand of a clock. Definition Values Period of wave: The time taken by a particle to complete one oscillations in the wave is called period of wave. Values of time period: One minute hand $=60 \mathrm{sec}$ One hour hand $=60 \mathrm{~min}=60 \times 60=3600 \mathrm{sec}$	2
	d)	Define the terms - Molecular range and Sphere of influence. Each Definition Molecular range: The maximum distance upto which cohesive force can act is called as molecular range. Sphere of influence: The imaginary sphere, surrounding a molecule in which force of attraction is present is called the sphere of influence of that molecule. OR The imaginary sphere drawn with molecule as a center and molecular range as a radius is called as sphere of influence.	2
	e)	Convert $55{ }^{0} \mathrm{C}$ to ${ }^{0} \mathrm{~F}$. Formula Answer with unit $\begin{aligned} & C=\frac{F-32}{1.8} \\ & \mathrm{~F}=(1.8 \times \mathrm{C})+32 \\ & \mathrm{~F}=(1.8 \times 55)+32 \\ & \mathrm{~F}=131^{0} \\ & \mathbf{5 5}^{\mathbf{0}} \mathbf{C}=\mathbf{1 3 1}^{\mathbf{0}} \mathbf{F} \end{aligned}$	2
	f)	State and explain Hooke's Law of elasticity. Statement Explanation Hooke's Law Within elastic limit, stress is directly proportional to strain. Therefore, stress α strain Stress $=$ constant x strain, Therefore modulus of elasticity $=$ stress/ strain	2

$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
1	g)	The refractive index of material of glass prism 1.51. Calculate the angle of refraction if the angle of incidence is 45°. Formula Answer with unit Given: Angle of incidence $=45^{\circ}$ Refractive index $(\mu)=1.51$ Angle of refraction $=$? $\begin{aligned} \mu & =\frac{\sin i}{\sin r} \\ \sin \mathrm{r} & =\sin \mathrm{i} / \mu=\sin (45) / 1.51 \\ \sin \mathrm{r} & =0.4682 \\ \mathrm{r} & =\sin ^{-1}(0.4682) \\ \mathrm{r} & =27.92^{\circ} \end{aligned}$ State any two characteristics of stationary waves. Any two characteristics Characteristics : i) It is superposition of two progressive waves moving in opposite direction in a medium. ii) There is no transfer of energy in a medium. iii) Nodes and antinodes are formed successively. iv) Nodes are the points on the wave whose displacement is zero. v) Antinodes are the points on the wave whose displacement is maximum. vi) The distance between two successive nodes or antinodes is $\lambda / 2$. vii) The distance between two successive nodes and antinodes is $\lambda / 4$. Calculate the viscous force acting on a raindrop of diameter 0.5 mm travelling with constant velocity of $6 \mathbf{m} / \mathrm{sec}$ through air if the coefficient of viscosity of air is 1.8×10^{-5} N -sec / m${ }^{2}$. Formula with substitution Answer with unit	2 1 1 2 2 2 1 1

Q. No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
1	i)	Given: $\mathrm{F}=\text { ? }$ $\mathrm{D}=0.5 \mathrm{~mm}$ $\mathrm{r}=0.25 \times 10^{-3} \mathrm{~m}$ $\mathrm{V}=6 \mathrm{~m} / \mathrm{s}$ $\eta=1.8 \times 10^{-5} \mathrm{Ns} / \mathrm{m}^{2}$ We have $\quad F=6 \pi \eta r v=6 \times 3.14 \times 1.8 \times 10^{-5} \times 0.25 \times 10^{-3} \times 6$ $F=50.868 \times 10^{-8} \mathrm{~N}$ State any two applications of radiation. Any two application 1. White or light coloured clothes are preferred in summer. 2. Heat radiators in car, machines are painted black. 3. Aeroplanes and ships are painted white. 4. High absorbing power of water vapour is a natural gift. 5. The polished surface of space craft reflect most of the heat radiated from sun. 6. Base of the cooking utensils is made black. 7. Inactivation of HIV by application of heat radiations. 8. Teapots has bright shining surface. Define bulk modulus of elasticity, poisson's ratio. Each definition Bulk Modulus(K): Within elastic limit the ratio of volume stress to volume strain is called Bulk modulus. Poisson's ratio: It is defined as the ratio of lateral strain to longitudinal strain. Derive the relation $V=\mathbf{n} \lambda$ for wave motion where all symbols have usual meaning. Derivation We have Velocity =Distance covered /Time taken When disturbance travels through one full wave then, Distance covered $=$ Wavelength $=\lambda \quad \&$ Time taken $=$ Period $=\mathrm{T}$ \therefore Velocity $=$ Wavelength $/$ Period $\mathrm{V}=\lambda / \mathrm{T}$ But $\quad 1 / \mathrm{T}=\mathrm{n}$ $\therefore \quad V=n \lambda$ V is velocity n is frequency λ is wavelength.	$\begin{aligned} & \mathbf{2} \\ & 2 \end{aligned}$

WINTER-17 EXAMINATION

Subject Name: Basic Physics
Model Answer
Subject Code:
17102

$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
2	a)	Attempt any FOUR of the following: Derive the expression for velocity of sound in air by resonance tube experiment. Diagram Expression End Correction A metal tube of diameter D is immersed in water. A tuning fork of known frequency n is made to vibrate and held at mouth of tube as shown in figure. The metal tube is adjusted such that loud sound is heard. Fix the position of tube where loud sound is heard. It is necessary to calculate end correction. End correction, e $=0.3 \mathrm{~d}$ Actual length of vibrating air column $=1$ Corrected length of vibrating air column $\mathrm{L}=\mathrm{e}+\mathrm{l}=(0.3 \mathrm{D})+1$ But $\mathrm{L}=\lambda / 4$ Therefore $\lambda / 4=e+1$ Therefore $\lambda=4(e+1)$ Velocity of sound in air is given by, $\begin{aligned} \mathrm{V} & =\mathrm{n} \lambda \\ \mathrm{~V} & =\mathrm{n} \times 4(\mathrm{e}+1) \\ & =4 \mathrm{n}(0.3 \mathrm{D}+1) \end{aligned}$ Therefore $V=4 n L$ This is the expression for velocity of sound in air by resonance tube experiment.	$\begin{aligned} & \mathbf{1 6} \\ & \mathbf{4} \\ & 1 \\ & 3 \end{aligned}$

WINTER- 17 EXAMINATION
Subject Name: Basic Physics
Model Answer
Subject Code:
17102

Q. No.	Sub Q. N.	Answer	Marking Scheme
2.	e)	i) Define acceptance angle \& numerical aperture with reference to optical fiber. ii) State any two application of optical fiber. Each definition Any two application i) Acceptance Angle (日a): The maximum value of external incident angle for which light will propagate in the optical fiber is called ac acceptance Angle. Numerical Aperture (NA): The sine of maximum acceptance angle is called as numerical aperture.	4
ii) Application of optical fiber: 1. Optical fiber in communication: Because of large bandwidth, it can handle number of channels. 2. Internet: Optical fiber cables pass on huge amount of data that it is too with very high speed. 3. Telephone: Using optical fiber communication we can connect faster and have clean conversations. 4. Used for signaling purpose in military. 5. Used in industrial automation system. 6. To observe internal organs of body in medical field. 7. Used in defenses for confidential communications. 8. Used in cable television. 9. Used for transmission of digital data. 10. Sensors: Optical fiber sensors are used to control liquid level, temperature, pressure, chemical concentration in automation system	2		

(ISO/IEC - 27001-2013 Certified)

WINTER-17 EXAMINATION
Subject Name: Basic Physics
Model Answer
Subject Code:
17102

$\begin{aligned} & \hline \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
3.	a)	Attempt any FOUR of the following: A body performs S.H.M. such that its velocity at the mean position is $\mathbf{2 ~ m} / \mathrm{sec} \&$ the acceleration at one of the extremities is $3.14 \mathrm{~m} / \mathrm{sec}^{2}$. Calculate the time period and hence the frequency of vibration. Each formula Each answer with unit Given: $\begin{aligned} & \mathrm{v}=2 \mathrm{~m} / \mathrm{s} \\ & \text { Acceleration }=3.14 \mathrm{~m} / \mathrm{s}^{2} \\ & \text { We have } \begin{aligned} \mathrm{v} & =\mathrm{a} \omega=2 \\ \text { Acceleration } & =\mathrm{a} \omega^{2}=3.14 \\ \mathrm{a} \omega^{2} / \mathrm{a} \omega & =3.14 / 2 \\ \omega & =1.57 \\ \omega & =2 \pi \mathrm{n} \\ \mathrm{n} & =\omega / 2 \pi=1.57 /(2 \times 3.14) \\ \mathrm{n} & =\mathbf{0 . 2 5} \mathbf{H z} \\ \mathrm{T} & =1 / \mathrm{n}=1 / .025 \\ \mathbf{T} & =\mathbf{4} \mathbf{~ s e c} \end{aligned} \end{aligned}$ Define the terms - free vibrations and forced vibrations. Give one example each. Each definition Each example Free vibrations: The vibrations performed by a body when only once disturbed from its equilibrium position and vibrates with a natural frequency are called free vibrations. Examples: Vibrating tuning fork, Concrete bridge, Vibration of air column, etc. Forced vibrations: When a body is continuously disturbed by a periodic force, then the particle cannot vibrate with its natural frequency but it starts vibrating with the frequency of periodic force. These vibrations are called forced vibrations. Examples: Tuning fork kept on vibrating engine, Concrete bridge in earth quake, Cricketers hanging ball, etc.	

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{$\begin{array}{lcl}\text { Subject Name: Basic Physics } & \text { WINTER-17 EXAMINATION } \\ \text { Model Answer }\end{array} \quad$ Subject Code: 1}

\hline $$
\begin{aligned}
& \mathrm{Q} . \\
& \mathrm{No.}
\end{aligned}
$$ \& $$
\begin{aligned}
& \hline \text { Sub } \\
& \text { Q. N. }
\end{aligned}
$$ \& Answer \& Marking Scheme

\hline 3. \& c)

d) \& \begin{tabular}{l}
Explain the behavior of the wire under continuously increasing load.

Diagram

Explanation

A graph or diagram of stress and strain is shown as above.

OE Portion is straight line which indicates that stress is proportional to strain. Therefore the wire obeys Hooke's law up to the point E this point is called elastic limit.

EE' Portion is curved towards strain axis this shows that increase in strain is more, than increase in stress. In this region stress is not proportional to strain. Between any point E and E' if all load is removed then some permanent elongation / Expansion / increase in length takes place in the wire this is called set. When wire is again loaded, a new straight line SE' is obtained which obey Hooke's law.

Some portion after the point Y is almost parallel to strain axis this shows that strain increases without increase in stress just like wire flows. This is called plastic flow. The point at which the plastic flow begins is called yield point.

A liquid of density $1050 \mathrm{~kg} / \mathrm{m}^{3}$ and surface tension $35 \times 10^{-3} \mathrm{~N} / \mathrm{m}$ rises to a height of 0.15 cm in a capillary tube of diameter 1.4 mm . Determine the angle of contact for the liquid.

Formula with substitution

Answer with unit

Given:
$$
\begin{aligned}
& \rho=1050 \mathrm{Kg} / \mathrm{m}^{3} \\
& \mathrm{~T}=35 \times 10^{-3} \mathrm{~N} / \mathrm{m} \\
& \mathrm{~h}=0.15 \mathrm{~cm}=0.15 \times 10^{-2} \mathrm{~m} \\
& \mathrm{D}=1.4 \mathrm{~mm} \\
& \mathrm{r}=0.7 \times 10^{-3} \mathrm{~m} \\
& \theta=?
\end{aligned} \quad \begin{aligned}
\mathrm{T} & \\
\text { We have, } & =\operatorname{rh\rho g} / 2 \cos \theta \\
\cos \theta & =\operatorname{rrg} \rho / 2 \mathrm{~T} \\
& =\left(0.7 \times 10^{-3}\right) \times\left(0.15 \times 10^{-2}\right) \times(1050) \times(9.8) / 2\left(35 \times 10^{-3}\right) \\
\cos \theta & =0.15435 \\
\boldsymbol{\theta} & =\mathbf{8 1 . 1 2 0}^{0}
\end{aligned}
$$

 \&

$$
\begin{aligned}
& \hline \mathbf{4} \\
& 2 \\
& 2
\end{aligned}
$$

4

$$
\begin{aligned}
& 2 \\
& 2
\end{aligned}
$$

\end{tabular}

\hline
\end{tabular}

(ISO/IEC - 27001-2013 Certified)

