MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION (Autonomous)
(ISO/IEC - 27001-2005 Certified)

WINTER- 16 EXAMINATION
 Model Answer

Subject Code:

17102

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme
1.	a)	Attempt any NINE of the Following: Define Elastic limit. Elastic limit: It is the maximum value of the stress upto which the body shows elasticity. b) cefine Poisson's ratio. Poisson's ratio: It is defined as the ratio of lateral strain to longitudinal strain. Define coefficient of viscosity. Write down its SI unit. Definition SI Unit Coefficient of viscosity: - The coefficient of viscosity η is defined as the viscous force developed between two liquid layers of unit surface area in contact which maintains unit velocity gradient. SI Unit: - Ns / m	
d)	Calculate the pressure at a depth $\mathbf{1 2}$ m inside the water. Formula and substitution Answer with unit	$\mathbf{2}$	

WINTER- 16 EXAMINATION
 Model Answer

WINTER- 16 EXAMINATION
 Model Answer
 Subject Code:
 17102

Page No: 03/12

WINTER- 16 EXAMINATION
 Model Answer
 Subject Code:

17102

$\begin{array}{\|l} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
1.	j)	We have, $\begin{aligned} \mathrm{V} & =\mathrm{n} \lambda \\ \mathrm{n} & =\mathrm{V} / \lambda \\ \mathrm{n} & =330 / 33 \times 10^{-2} \\ \mathbf{n} & =\mathbf{1 0} \times \mathbf{1 0}^{\mathbf{2}} \mathbf{H z} . \end{aligned}$	
	k)	Define free and forced vibrations. Each definition Definition Free vibrations: If a body vibrates freely on its own frequency then such vibration are called free vibrations. Forced vibrations: If a body vibrates other than its natural frequency then such vibration is called as forced vibration.	$\begin{aligned} & 2 \\ & 1 \end{aligned}$
	1)	State the formula for velocity of sound by resonance tube method. Formula: $V=4 n L \quad$ or $V=4 n(1+0.3 D)$	2
2.	a)	Attempt any FOUR of the following: Define: Young's modulus, Bulk modulus, Rigidity modulus of Elasticity. Give relation between them. Each Definition Relation Young's modulus(Y): Within elastic limit the ratio of longitudinal stress to longitudinal strain called Young's modulus. OR It is the ratio of tensile stress to tensile strain. Bulk Modulus(K): Within elastic limit the ratio of volume stress to volume strain is called Bulk modulus. OR It is the ratio of volume stress to volume strain. Modulus of Rigidity $(\boldsymbol{\eta})$: Within elastic limit the ratio of shearing stress to shearing strain is called modulus of rigidity. OR It is the ratio of shearing stress to shearing strain. $\begin{array}{r} \text { Relation between } \mathbf{Y}, \boldsymbol{\eta} \text { and } K:-\quad Y=\frac{9 \eta K}{3 K+\eta} \\ \frac{1}{Y}=\frac{1}{3 \eta}+\frac{1}{9 K} \end{array}$ OR	$\begin{aligned} & \mathbf{1 8} \\ & \mathbf{4} \\ & 1 \\ & 1 \end{aligned}$

Page No: $\underline{04 / 12}$

WINTER- 16 EXAMINATION
 Model Answer
 Subject Code:

WINTER-16 EXAMINATION
 Model Answer
 Subject Code:
 17102

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \hline \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
2.	c)	Since metal sphere falls with constant velocity, the total upward force is equal to the downward force. Total upward force $=$ The downward force [Force of viscosity] + [up thrust force] = weight of the metal sphere $[6 \pi \eta r v]+[$ Weight of liquid displaced] $=[$ Mass of metal sphere Xg] $\begin{aligned} & {[6 \pi \eta r v]+\frac{4}{3} \pi r^{3} \rho g=\frac{4}{3} \pi r^{3} d g} \\ & {[6 \pi \eta r v]=\frac{4}{3} \pi r^{3} d g-\frac{4}{3} \pi r^{3} \rho g} \\ & 6 \pi \eta r v=\frac{4}{3} \pi r^{3} g(d-\rho) \\ & \eta=\frac{\frac{4}{3} \pi r^{3} g(d-\rho)}{6 \pi r v} \\ & \eta=\frac{2}{9} \frac{r^{2} g(d-\rho)}{v} \end{aligned}$ Where, $\eta=$ Coefficient of viscosity of liquid $r=$ radius of metal sphere $\mathrm{d}=$ density of metal sphere $\rho=$ density of liquid $\mathrm{v}=$ terminal velocity	1

WINTER- 16 EXAMINATION
 Model Answer
 Subject Code:
 17102

WINTER- 16 EXAMINATION
 Model Answer
 Subject Code:

17102

$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
2.	f)	Given: $\mathrm{t}=5$ minutes $=5 \times 60=300 \mathrm{Sec}, \mathrm{A}=40 \mathrm{~cm} \times 30 \mathrm{~cm}=1200 \mathrm{~cm}^{2}=1200 \times 10^{-4} \mathrm{~m}^{2}$ $\mathrm{~d}=3 \mathrm{~mm}=3 \times 10^{-3} \mathrm{~m}, \quad \theta_{1}=40^{\circ} \mathrm{C}, \theta_{2}=25^{0} \mathrm{C}, \mathrm{k}=0.1 \mathrm{kcal} / \mathrm{m}^{0} \mathrm{C} \mathrm{S}, \mathrm{Q}=?$ We have, $\begin{aligned} & Q=\frac{k \times A\left(\theta_{1}-\theta_{2}\right) \times t}{d} \\ & Q=\frac{0.1 \times 1200 \times 10^{-4}(40-25) \times 300}{3 \times 10^{-3}} \end{aligned}$ $Q=18000 \mathrm{kcal}$ Attempt any FOUR of the following: State and explain three modes of transmission of heat. State (Names) Explanation 1. Conduction 2. Convection 3. Radiation	$\begin{aligned} & \mathbf{1 6} \\ & \mathbf{4} \\ & 1 \\ & 3 \end{aligned}$

WINTER- 16 EXAMINATION
 Model Answer
 Subject Code:

17102

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{array}{|l|}
\hline \text { Q. } \\
\text { No. }
\end{array}
$$ \& $$
\begin{aligned}
& \text { Sub } \\
& \text { Q.N. }
\end{aligned}
$$ \& Answer \& Marking Scheme

\hline 3. \& b)

c) \& | Define Cp and Cv and Derive relation between them. |
| :--- |
| Each definition. |
| Derivation. |
| Specific heat of a gas at constant volume $(\mathbf{C v})$: |
| Specific heat of a gas at constant volume is defined as the amount of heat required to increase the temperature of unit mass of a gas by one degree at constant volume. |
| Specific heat of a gas at constant pressure ($\mathbf{C p}$): |
| Specific heat of a gas at constant pressure is defined as the amount of heat required to increase the temperature of unit mass of a gas by one degree at constant pressure. |
| In case of Cv whatever may be amount of heat is supplied is used to increase only temperature of gas because volume of gas is constant. |
| In case of Cp whatever may be amount of heat is supplied is used to |
| i) increase temperature of gas |
| ii) increase volume of gas |
| Thus in case of Cp , some addition heat is required for expansion. |
| $\mathrm{Cp}=\mathrm{Cv}+$ Heat required to increase the volume of a gas. $\begin{gathered} \mathrm{Cp}=\mathrm{Cv}+\mathrm{H} \\ \mathrm{Cp}=\mathrm{Cv}+\mathrm{W} / \mathrm{J} \ldots \ldots \ldots . \text { by Joule's law } \\ \mathrm{Cp}=\mathrm{Cv}+\mathrm{P}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) / \mathrm{J} \\ \mathbf{C p}-\mathbf{C v}=\mathbf{R} / \mathbf{J} \end{gathered}$ |
| This is the relation between Cp and Cv . |
| Derive prism formula. |
| Diagram. |
| Derivation. |
| $P Q=$ Incident ray |
| $\mathrm{QR}=$ Refracted ray |
| RS = Emergent ray |
| $i=$ Angle of incidence |
| $r_{1}=$ Angle of refraction |
| $\mathrm{e}=$ Angle of emergence |
| $\delta=$ Angle of deviation |
| $r_{2}=$ Angle of refraction |
| $\angle B A C=$ Angle of prism | \& \[

$$
\begin{aligned}
& \mathbf{4} \\
& 1 \\
& 2
\end{aligned}
$$
\]

\hline
\end{tabular}

Page No: 09/12
(ISO/IEC - 27001-2005 Certified)

WINTER- 16 EXAMINATION
 Model Answer
 Subject Code:
 17102

$\begin{aligned} & \mathrm{Q} . \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
3.	c)	Let PQ be the incident ray obliquely incident on refracting face $A B$. At point Q the ray enters from air to glass therefore at Q the incident ray is refracted and travels along QR by making $\angle \mathrm{r}_{1}$ as angle of refraction. At point R the ray of light enter from glass to air and get refracted along RS. From $\triangle E Q R$ $\begin{align*} & \delta=x+y \\ & \delta=\left(i-r_{1}\right)+\left(e-r_{2}\right) \\ & \delta=(i+e)-\left(r_{1}+r_{2}\right) \tag{1} \end{align*}$ From $\triangle Q D R$ $\angle r_{1}+\angle r_{2}+\angle Q D R=180^{\circ}-------------(2)$ As AQDR is cyclic quadrilateral $\begin{equation*} \angle A+\angle Q D R=180^{\circ} \tag{3} \end{equation*}$ By comparing eq.(2) and(3) $\begin{equation*} A=r_{1}+r_{2}- \tag{4} \end{equation*}$ Substituting above value in eq.(1) Eq.(1) becomes $\begin{align*} & \delta=(i+e)-A \\ & \delta+A=(i+e) \tag{5} \end{align*}$ If $\begin{gathered} \delta=\delta m \\ i=e \end{gathered}$ And $r_{1}=r_{2}=r$ Equation (5) Becomes $\begin{aligned} & A+\delta m=i+i \\ & A+\delta m=2 i \\ & i=\frac{A+\delta m}{2} \end{aligned}$ And equation (4) becomes $\begin{aligned} & A=r+r \\ & A=2 r \\ & r=\frac{A}{2} \end{aligned}$	

(ISO/IEC - 27001-2005 Certified)

WINTER- 16 EXAMINATION
 Model Answer
 Subject Code:
 17102

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{array}{|l}
\hline \text { Q. } \\
\text { No. }
\end{array}
$$ \& $$
\begin{aligned}
& \text { Sub } \\
& \text { Q.N. }
\end{aligned}
$$ \& Answer \& Marking Scheme

\hline 3. \& c)

d) \& | According to Snell's law $\mu=\frac{\sin i}{\sin r}$ |
| :--- |
| Substituting values of i and r in above equation $\mu=\frac{\sin \left(\frac{A+\delta m}{2}\right)}{\sin \left(\frac{A}{2}\right)}$ |
| Above formula is called as prism formula |
| Numerical aperture of fiber is $\mathbf{0 . 2 4 4}$ and refractive index of cladding is $\mathbf{1 . 4 8}$. calculate refractive index of core and acceptance angle. |
| Formula and Substitution. |
| Answer with unit. |
| Given |
| $\mu_{\text {core }}=$? |
| $\mu_{\text {clad }}=1.48$ |
| $\mathrm{N}_{\mathrm{A}}=0.244$ |
| $\mathrm{N}_{\mathrm{A}}=\operatorname{Sin} \theta_{\mathrm{a}}$ where θ_{a}, is called acceptance cone angle. $\left(\mathrm{N}_{\mathrm{A}}\right)^{2}=\left(\mu_{\text {core }}\right)^{2}-\left(\mu_{\text {clad }}\right)^{2}$ $\begin{aligned} & \left(\mu_{\text {core }}\right)^{2}=\left(\mathrm{N}_{\mathrm{A}}\right)^{2}+\left(\mu_{\text {clad }}\right)^{2} \\ & \left(\mu_{\text {core }}\right)^{2}=(0.244)^{2}+(1.48)^{2} \\ & \mu_{\text {core }}=1.49999 \\ & \boldsymbol{\mu}_{\text {core }}=\mathbf{1 . 5 0} \end{aligned}$ $\begin{aligned} \operatorname{Sin} \theta_{\mathrm{a}} & =\mathrm{N}_{\mathrm{A}} \\ \theta_{\mathrm{a}} & =\operatorname{Sin}^{-1}\left(\mathrm{~N}_{\mathrm{A}}\right) \\ \theta_{\mathrm{a}} & =\operatorname{Sin}^{-1}(0.244) \\ \boldsymbol{\theta}_{\mathrm{a}} & =\mathbf{1 4 . 1 2} \end{aligned}$ | \& \[

$$
\begin{aligned}
& 4 \\
& 2 \\
& 2
\end{aligned}
$$
\]

\hline
\end{tabular}

WINTER- 16 EXAMINATION
 Model Answer
 Subject Code:

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{aligned}
& \mathrm{Q} . \\
& \text { No. }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { Sub } \\
& \text { Q.N. }
\end{aligned}
$$ \& Answer \& Marking Scheme

\hline 3. \& e)

f) \& | Define transverse wave. State its three characteristics. |
| :--- |
| Definition. |
| Any three points. |
| Transverse waves: The wave in which direction of vibration of particles of material medium is perpendicular to the direction of propagation of wave is called transverse wave. |
| Characteristics of transverse wave. |
| 1. The wave in which direction of vibration of particles of material medium is perpendicular to the direction of propagation of wave is called transverse wave. |
| 2. Wave travels in form of alternate crests and trough. |
| 3. Density and pressure of medium remain same. |
| 4. Wave travels through solid only |
| e.g. Light wave |
| Calculate velocity of sound if resonating length 14 cm is observed for tuning fork of frequency 512 Hz . |
| Formula and Substitution. |
| Answer with unit. |
| Given: |
| $\mathrm{n}=512 \mathrm{~Hz}$. |
| $\mathrm{L}=14 \mathrm{~cm}=14 \times 10^{-2} \mathrm{~m}$ |
| $\mathrm{V}=$? |
| Formula - $\begin{aligned} & \mathrm{V}=4 \mathrm{~nL} \\ & \mathrm{~V}=4 \times 512 \times\left(14 \times 10^{-2}\right) \\ & \mathbf{V}=\mathbf{2 8 6 . 7 2} \mathbf{~ m} / \mathrm{s} \end{aligned}$ | \& \[

4
\]

$$
4
$$

$$
2
$$

$$
2
$$

\hline
\end{tabular}

Page No: $\underline{12 / 12}$

