

SUMMER - 2015 EXAMINATION						
Subje	ct Code	e: 17102 <u>Model Answer Basic Science (Physics)</u> P	age No: '	1/11		
Que. No	Sub. Oue	Stepwise Solution	Marks	Total Marks		
1.00	Quer	Important Instructions to examiners:		11101110		
		1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme				
		2) The model answer and the answer written by candidate				
		may vary but the examiner may try to assess the				
		understanding level of the candidate. 3) The language errors such as grammatical spelling errors				
		should not be given more Importance (Not applicable for subject English and Communication Skills)				
		4) While assessing figures, examiner may give credit for				
		principal components indicated in the figure. The figures				
		examiner may give credit for any equivalent figure drawn.				
		5) Credits may be given step wise for numerical problems.				
		In some cases, the assumed constant values may vary and there may be some difference in the condidate's ensures				
		and model answer.				
		6) In case of some questions credit may be given by				
		judgment on part of examiner of relevant answer based on candidate's understanding				
		7) For programming language papers, credit may be				
		given to any other program based on equivalent concept.				

SUMMER – 2015 EXAMINATION						
Subje	Subject Code: 17102 <u>Model Answer</u> Page No: 02/11					
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks		
1)		Attempt any Nine of the following:		18		
	a)	Define Elasticity and Plasticity.	1	2		
		Each definition-				
		Elasticity:				
		Elasticity is defined as a property of the body by virtue of which it				
		tends to regain its original shape or size on removal of deforming				
		forces.				
		Plasticity:				
		Plasticity is defined as a property of the body by virtue of which it				
		does not regain its original shape or size on removal of deforming				
		forces.				
	b)	State Hooke's Law Statement	2	2		
		Hooke's Law	2	2		
		Within elastic limit, stress is directly proportional to strain.				
	c)	State pressure depth relation. Give meaning of each term in it. Relation	1			
		Meaning of symbol Belation	1	2		
		$P = h \circ g$	_			
		Where,				
		P = Pressure.				
		$\rho = \text{Density of liquid.}$				
		g = Acceleration due to gravity.				
	d)	Explain the significance of Reynold's number.	2	2		
		Significance of Reynolds number 1. When R < 2000, the flow of liquid is streamline.				
		2. When $\mathbf{R} > 3000$, the flow of liquid is turbulent .				
		3. When R is in between 2000 to 3000, the flow of liquid is unstable				

SUMMER - 2015 EXAMINATION

Subject Co	de: 17102 <u>Model Answer</u> Pag	ge No: 03	/11
Que. Sub No. Que	Stepwise Solution	Marks	Total Marks
1) e)	Define surface tension. State its S.I. unit. Definition Unit Definition: The force acting per unit length of an imaginary line drawn to surface of liquid. OR The surface tension is defined as the property of liquids by virtue of which the surface of a liquid is under constant tension due to the tendency to contract and occupy minimum surface area. S L unit :- N/m	1 1	2
f)	Convert 45 °C temperature into °F. Formula Answer with unit $C = \frac{F - 32}{1.8}$ $F = (1.8 \times C) + 32$ $F = (1.8 \times 45) + 32$ $F = 113^{\circ}F$ $45^{\circ}C = 113^{\circ}F$	1 1	2
g)	 Define the two specific heats of gas. Each definition- Specific heat of a gas at constant volume- Specific heat of a gas at constant volume is defined as the amount of heat required to increase the temperature of unit mass of a gas by one degree celsius at constant volume. Specific heat of a gas at constant pressure- Specific heat of a gas at constant pressure is defined as the amount of heat required to increase the temperature of unit mass of a gas by one degree celsius at constant pressure is defined as the amount of heat required to increase the temperature of unit mass of a gas by one degree celsius at constant pressure is defined as the amount of heat required to increase the temperature of unit mass of a gas by one degree celsius at constant pressure. 	1	2
h)	A metal rod of length 0.20 m has on of its ends at 20 °C while the other is at 50°C.find the temperature gradient. Formula Answer with unit Given : $d = 0.20$ m $\theta_1 = 20$ °C $\theta_2 = 50$ °C Temperature gradient =? Temperature gradient = $\frac{(\theta_2 - \theta_1)}{d} = \frac{(50 - 20)}{0.20}$ Temperature gradient =150 °C/m	1	2

SUMMER – 2015 EXAMINATION						
e: 17102 <u>Model Answer</u> P	age No:	04/11				
Stepwise Solution	Marks	Total Marks				
State Snell's law of refraction of light.Laws of refraction:-i)Snell's law: For any two media the ratio of sine angle of incidence to the sine angle of refraction is constant. This is known as Snell's law. $\mu = \frac{\sin i}{\sin r}$ ORSine of angle of incidence is directly proportional Sine of angle of refraction.	2	2				
 Define Amplitude and Frequency. Each definition Amplitude-It is defined as the maximum displacement of the particle from either side of mean position. Frequency -The number of cycle or oscillation or vibration completed in one second is called as frequency. 	1	2				
What are stationary waves? Stationary waves: The resultant wave produced due to the superposition of two identical progressive waves with same amplitude, wavelength, frequency and velocity and travelling along the same straight line but in opposite direction is called stationary or standing wave.	2	2				
Derive the relation $\mathbf{V} = \mathbf{n} \lambda$. We have Velocity =Distance covered /Time taken When disturbance travels through one full wave then, Distance covered = Wavelength = λ And Time taken = Period = T \therefore Velocity = Wavelength/ Period $V = \lambda/T$ But $1/T = n$ \therefore $\mathbf{V} = \mathbf{n} \lambda$	2	2				
	e: 17102 Model Answer F Stepwise Solution State Snell's law of refraction of light. Laws of refraction: i) Snell's law: For any two media the ratio of sine angle of incidence to the sine angle of refraction is constant. This is known as Snell's law. $\mu = \frac{\sin i}{\sin r}$ OR Sine of angle of incidence is directly proportional Sine of angle of refraction. Define Amplitude and Frequency. Each definition Amplitude-It is defined as the maximum displacement of the particle from either side of mean position. Frequency -The number of cycle or oscillation or vibration completed in one second is called as frequency. What are stationary waves? Stationary waves: The resultant wave produced due to the superposition of two identical progressive waves with same amplitude, wavelength, frequency and velocity and travelling along the same straight line but in opposite direction is called stationary or standing wave. Derive the relation V = n λ. We have Velocity =Distance covered /Time taken When disturbance travels through one full wave then, Distance covered = Wavelength = λ And Time taken = Period = T ∴ Velocity =Wavelength / Period V = λ/T But 1/T = n ∴ V = n λ	SUMMER - 2015 EXAMINATIONPage No:Stepwise SolutionMarksStepwise SolutionMarksStepwise SolutionMarksStepwise SolutionMarksStepwise SolutionMarksStepwise SolutionMarksStepwise SolutionMarksStepwise SolutionMarks2Colspan="2">Colspan="2">Station of incidence to the sine angle of refraction is constant. This is known as Snell's law. $\mu = \frac{\sin i}{\sin r}$ ORSine of angle of incidence is directly proportional Sine of angle of refraction.Define Amplitude and Frequency.Each definition1Amplitude-IL is defined as the maximum displacement of the particle from either side of mean position.Frequency -The number of cycle or oscillation or vibration completed in one second is called as frequency.What are stationary waves?Stationary waves?Stationary waves?Stationary waves?Stationary waves?Stationary waves?Derive the relation V = n λ .Vehave Velocity =Distance covered /Time taken When disturbance travels through one full wave then, Distance covered = Mavelength - And Time taken = Period = T \therefore Velocity = Wavelength / Period $V = \lambda/T$ V = n				

SUMMER - 2015 EXAMINATION

Subje	ct Code	: 17102 <u>Model Answer</u> I	age No: ()5/11
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
Subjec Que. No. 2)	a)	Model Answer I Stepwise Solution Stepwise Solution Attempt any four of the following Explain behavior of wire under continuously increasing load. Neat labeled diagram Explanation Explanation Feaking stress Stress Feaking point Set Set point Detuitimate stress Detuitimate stress A graph or diagram of stress and strain is shown as above. OE OE Portion is straight line which indicates that stress is	Page No: (Marks 2 2)5/11 Total Marks 16 4
		proportional to strain. Therefore the wire obeys Hooke's law up to the point E this point is called elastic limit. EE' Portion is curved towards strain axis this shows that increase in strain is more, than increase in stress. In this region stress is not		
		proportional to strain. Between any point E and E' if all load is removed then some permanent elongation / Expansion / increase in length takes place in the wire this is called set. When wire is again loaded, a new straight line SE' is obtained which obey Hooke's law.		
		Some portion after the point Y is almost parallel to strain axis this shows that strain increases without increase in stress just like wire flows. This is called plastic flow. The point at which the plastic flow begins is called yield point.		

SUMMER - 2015 EXAMINATION

Subjec	t Code	e: 17102 <u>Model Answer</u>	Page No: 06	/11
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
2)	b)	A wire of diameter 3 mm and length 4 m extends by 2.5 mm when a force of 10 N is applied. Find Young's modulus of material of wire. Formula with substitution Answer with unit Given : Diameter(d) =3 mm= 3 x 10 ⁻³ m Radius(r) = d/2=1.5 x 10 ⁻³ m Original length(L) =4 m Extended length(1) = 2.5 mm = 2.5 x 10 ⁻³ m Force (F) = 10 N Young's modulus(Y) =? Formula:- $Y = \frac{FL}{\Pi r^2 l}$ $Y = \frac{10 \times 4}{3.14 \times (1.5 \times 10^{-3}) \times 2.5 \times 10^{-3}}$ $Y = 2.26 x 10^9 \text{ N/m}^2$	22	4
	c)	Define Young's modulus, Bulk modulus and modulus of Rigidity and state relation between them. Each Definition Relation Young's modulus(Y): Within elastic limit the ratio of longitudinal stress to Longitudinal strains called Young's modulus. OR It is the ratio of tensile stress to tensile strain. Bulk Modulus(K): Within elastic limit the ratio of volume stress to volume strain i called Bulk modulus. OR It is the ratio of volume stress to volume strain/Bull strain. Modulus of Rigidity(η): Within elastic limit the ratio of shearing stress to shearing strain is called modulus of rigidity. OR It is the ratio of shearing stress to shearing strain. Relation between Y , η and K:- $Y = \frac{9\eta K}{3K + \eta}$ OR $\frac{1}{Y} = \frac{1}{3\eta} + \frac{1}{9K}$	1 1 1	4

SUMMER - 2015 EXAMINATION

Subject Code: 17102

Model Answer

Page No: 07/11

Que.	Sub.	Stepwise Solution	Marks	Total
No.	Que.		maino	Marks
2)	d)	State Stoke's law of viscosity and state the formula		
		for coefficient of viscosity. Stokes I aw	2	
		Formula for coefficient of viscosity.	$\frac{2}{2}$	4
		Stoke's law of viscosity	-	
		It state that the force of viscosity experienced by a metal		
		sphere falling freely through a viscous medium with terminal		
		velocity is directly proportional to		
		i) Radius of metal sphere(r)		
		ii) Terminal velocity(v)		
		Formula for coefficient of viscosity. $2r^2(d-a)\times a$		
		$\eta = \frac{2}{0} \frac{r(a-p) \times g}{V}$ OR $\eta = \frac{F}{6\pi m}$		
		9 V 027V		
		A capillary tube of diameter 0.2mm is dipped into a liquid of		
	e)	density 0.85 x 10^3 kg/m ³ and angle of contact 24^0 . If the liquid		
		rises by 41 mm in the tube. Find the surface tension of the		
		liquid.		
		Formula Substitution & Coloulation	1	
		Substitution & Calculation Answer with Unit	1	
		Given : Diameter(d) = $0.2 \text{ mm} = 0.2 \text{ x} 10^{-3} \text{ m}$	2	4
		Radius (r) = $d/2 = 0.1 \times 10^{-3} \text{ m}$		
		Density of liquid (ρ) =0.85 x 10 ³ kg/m ³		
		Angle of contact $(\theta) = 24^{\circ}$		
		Rise of liquid (h) = 41 mm = 41 x 10^{-3}		
		Surface tension $(T) = ?$		
		we have,		
		$-hr\rho g$		
		$T = \frac{78}{2\cos\theta}$		
		$T = \frac{(41 \times 10^{-3}) \times (0.1 \times 10^{-3}) \times (0.85 \times 10^{3}) \times 9.8}{(0.1 \times 10^{-3}) \times (0.85 \times 10^{3}) \times 9.8}$		
		$2\cos 24^{\circ}$		
		$T - 18603 \times 10^{-3} $ N/m		
		1 –10.075 A 10 19/11		

Subject Code: 17102

SUMMER - 2015 EXAMINATION Model Answer

Page No: 08/11

Que.	Sub.	Stepwise Solution			Total
No.	Que.				Marks
2)	f)	Distinguish between isothermal process and adiabatic			
		process.			4
		Any four points			
		Isothermal process	Adiabatic process		
		Gas volume is changed by	Gas volume and also its		
		keeping temperature constant	temperature changes		
		For this, changes in volume	For this, changes in volume		
		are made very slowly	are made very quick		
		Exchange of heat between	Exchange of heat between		
		system and surrounding	system and surrounding		
		takes place	does not takes place		
		For carrying out this process,	For carrying out this		
		a perfect gas is taken in a	process, a perfect gas is		
		cvlinder having conducting	taken in a cylinder having		
		walls	insulating walls		
		Boyle's law is valid	Boyle's law is not valid		
		Expansion of gas takes place	Compression of gas takes		
		Expansion of gas takes place	place		
		There is no change in internal	There is change in internal		
		enerov	enerov		
		e.g. Melting of solid and	e a Bursting of cycle		
		hoiling of water	rubbar tuba		
3)	a)	Attempt any four of the followin Define three gas laws and specif Each definition- Boyle's law: - For fixed mass of a gas, temperation constant, its pressure is inversely Charle's Law: For fixed mass of a gas, pressure of volume is directly proportional to Gay Lussac's Law: - For fixed mass of a gas, volume constant, its pressure is directly p temperature. Specific heat of a substance- Specific heat of a substan of heat required to increase the te substance by one degree celsius.	hg: ic heat of a substance. ture of a gas remaining proportional to its volume. of a gas remaining constant, its its absolute temperature. of a gas remaining proportional to its absolute ce is defined as the amount emperature of unit mass of a	1	16 4

3)	b)	State the factors affecting conduction of heat and state the relation between them. Factors Relation Factors affecting conduction of heat:- i)Cross-sectional area of rod (A) ii)Temperature difference between two surfaces of the conductor (θ_1 - θ_2) iii) Time for which heat flows. (t) iv)Distance between two surfaces.(d) Relation:- $Q = \frac{K \times A(\theta_1 - \theta_2) \times t}{d}$	3 1	4	
	c)	Calculate numerical aperture and acceptance angle for an optical fiber. Given: R.I of core = 1.40 R.I. of cladding = 1.35. Two formulae Two answers with units Given: $\mu_{core} = 1.40$ $\mu_{clad} = 1.35$ $N_A = ?$ $\theta_A = ?$ Formula: $N_A = \sqrt{\mu_{core}^2 - \mu_{clad}^2}$ $N_A = \sqrt{(1.40)^2 - (1.35)^2}$ $N_A = 0.371$ $\theta_A = \sin^{-1} (N_A)$ OR $\theta_A = \sin^{-1} \sqrt{\mu_{core}^2 - \mu_{clad}^2}$ $\theta_A = \sin^{-1} (0.371)$ $\theta_A = 21^0.77'$	22	4	

Cultin	at Cade	SUIVIIVIEK – 2013 EXAMINATION Madel Agenuar Dage Ni	. 10/11	
Subje		e: 17102 <u>Model Answer</u> Page No	5: 10/11	T 1
Que. No.	Oue.	Stepwise Solution	Marks	Marks
3)	d)	Explain the phenomenon of total internal reflection for glass material with neat labeled diagram. Diagram Explanation	2 2	4
		Explanation: Consider light rays from a point source S in optically denser medium (glass) fall on the surface, on the other side of which is less optically denser medium (air) as shown above. For the rays a, b, c there are both reflection and refraction taking place at interface. For the ray's e, f there angle of incidence is larger than θ_c there is no refraction and only reflection takes place i.e. T.I.R. (Total internal reflection). Thus as the angle of incidence 'i' is increased a situation is reached at which the refracted ray points along the surface and angle of refraction is 90°. For the angle of incidence 'i' is reflected.		

Subject Code: 17102

SUMMER – 2015 EXAMINATION Model Answer

Page No: 11/11

Que.	Sub.	Stepwise Solution			Total
No.	Que.	Stepwise		WIAIKS	Marks
3)	e)	Distinguish between transverse and longitudinal waves			
		Any four points		1	4
		Transverse Wave	Longitudinal Waves		
		The wave in which	The wave in which		
		direction of vibration of	direction of vibration of		
		particles of material	particles of material modium is parallel to the		
		to the direction of	direction of propagation of		
		propagation of wave is	wave is called longitudinal		
		called transverse wave.	wave.		
		Wave travels in form of	Wave travels in form of		
		alternate crests and trough	alternate compressions and		
			rarefactions.		
		Density and pressure of	Density and pressure of		
		medium remain same.	medium remain change.		
		Wave travels through solid	Wave travels through		
		e a Light wave	e a Sound waves		
		e.q. Ligin wave	e.q. bound waves		
	f)	A tuning fork of frequency 51 air column of length 14.4 cm t mm. Calculate velocity of sour Formula and Substitution Answer with unit Given n = 512 Hz. $1 = 14.4$ cm.= $14.4 \times 10^{\circ}$ $e = 6$ mm = $6 \times 10^{\circ 3}$ m v = ? Formula – v = 4n (1 + e) v = 4x 512 x (14.4 x) v = 307.20 m/s v = 30720 cm/s	2 Hz resonates with an the end correction is 6 nd in air. - ² m $10^{-2} + 6 \times 10^{-3}$)	2 2	4