WINTER - 14 EXAMINATION
Model Answer
Page No: $1 / 16$
Subject Code: 17102

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
		Important Instructions to the Examiners: 1) The Answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate. 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.) 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn. 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's Answers and the model answer. 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept.		

WINTER - 14 EXAMINATION
Subject Code: 17102
Model Answer
Page No: 02/16

Subject Code: 17102
Model Answer
Page No: 03/16

WINTER - 14 EXAMINATION
Subject Code: 17102
Model Answer
Page No: 04/16

WINTER - 14 EXAMINATION

Subject Code: 17102
Model Answer
Page No: 05/16

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Stepwise Solution \& Marks \& \begin{tabular}{l}
Total \\
Marks
\end{tabular} \\
\hline 1) \& h) \& \begin{tabular}{l}
Define specific heats of gas at constant pressure and volume. \\
Each definition- \\
Specific heat of a gas at constant volume- \\
Specific heat of a gas at constant volume is defined as the amount of heat required to increase the temperature of unit mass of a gas by one degree at constant volume. \\
Specific heat of a gas at constant pressure- \\
Specific heat of a gas at constant pressure is defined as the amount of heat required to increase the temperature of unit mass of a gas by one degree at constant pressure. \\
The velocity of wave is \(300 \mathrm{~m} / \mathrm{s}\) and wavelength is 100 cm . Calculate its frequency. \\
Formula \\
Answer with unit \\
Given :
\[
\begin{aligned}
\& \mathrm{v}=300 \mathrm{~m} / \mathrm{s} \\
\& \lambda=100 \mathrm{~cm}-100 \times 10^{-2} \mathrm{~m} \\
\& \mathrm{v}=\mathrm{n} \lambda \\
\& \mathrm{n}=\mathrm{v} / \lambda \\
\& \mathrm{n}=300 / 100 \times 10^{-2} \\
\& \mathrm{n}=300 \mathrm{~Hz}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
1 \\
1 \\
1
\end{tabular} \& 2

2

\hline
\end{tabular}

WINTER - 14 EXAMINATION
Subject Code: 17102
Model Answer Page No: 06/16

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
E)	Define Transverse Wave and Longitudinal Wave. Transverse Wave: - The wave in which the direction of vibration of particles of material medium is perpendicular to the direction of propagation of wave is called transverse wave. Longitudinal Wave: - The wave in which the direction of vibration of particles of	1	2	

WINTER - 14 EXAMINATION
Subject Code: 17102
Model Answer
Page No: 07/16

WINTER - 14 EXAMINATION
Subject Code: 17102
Model Answer
Page No: 08/16

WINTER - 14 EXAMINATION
Subject Code: 17102
Model Answer
Page No: 09/16

WINTER - 14 EXAMINATION
Subject Code: 17102
Model Answer
Page No: 10/16

Que. No.	Sub. Que.	Stepwise	Solution	Marks	$\begin{aligned} & \text { Total } \\ & \text { Marks } \end{aligned}$
2)	d)				
		Stream line flow	Turbulent flow		
		The path of every particle is same	The path of every particle is different		
		The velocity of particle is constant in magnitude and direction	The velocity of particle at each point is not constant		
		Flow is regular	Flow is irregular		
		No circular currents or eddies are developed	Random circular currents called vertices are developed		
		The liquid flows steadily	The flow becomes turbulent after critical velocity.		
		e.gThe flow of liquid through pipe, water flow of river in summer etc.	e.g flow of river in flood, water fall etc.		
		$\mathrm{V}<\mathrm{V}_{\mathrm{c}}$	$\mathrm{V}>\mathrm{V}_{\mathrm{C}}$		
		$\mathrm{R}<2000$	$\mathrm{R}>3000$		
	e)	A capillary tube of diameter 0.2 mm is dipped in a liquid of density $0.9 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and angle of contact 24^{0}. If the liquid rises by 41 mm in the tube, find the surface tension of liquid.			4
		Formula		1	
		Substitution and Calculation			
		Answer with unit			
		Given :	Required:		
		$\begin{aligned} & \mathrm{r}=0.1 \times 10^{-3} \mathrm{~m} \\ & \rho=0.9 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} \\ & \theta=24^{0} \\ & \mathrm{~h}=41 \times 10^{-3} \mathrm{~m} \end{aligned}$	$\mathrm{T}=\text { ? }$		

WINTER - 14 EXAMINATION
Subject Code: 17102
Model Answer
Page No: 11/16

WINTER - 14 EXAMINATION
Subject Code: 17102
Model Answer
Page No: 12/16

Subject Code: 17102
Model Answer
Page No: 13/16

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
3)	b)			
		Given: Required:		
		$\mathrm{P}_{1}=76 \mathrm{~cm}$ of $\mathrm{Hg} \quad \mathrm{P}_{2}=$?		
		$\mathrm{T}_{1}=273{ }^{0} \mathrm{~K}$		
		$\mathrm{V}_{1}=24 \mathrm{lit}$.		
		$\mathrm{T}_{2}=273+27=300^{\circ} \mathrm{K}$		
		$\mathrm{V}_{2}=20 \mathrm{lit}$		
		$\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2}$		
		$\mathrm{P}_{2}=\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2} / \mathrm{T}_{1} \mathrm{~V}_{2}$		
		$\mathrm{P}_{2}=76 \times 24 \times 300 / 273 \times 20$		
		$P_{2}=100.21 \mathrm{~cm} \text { of } \mathrm{Hg}$		
	c)	Obtain prism formula.	2	4
		Diagram		
		Derivation	2	
		A ..P. $\mathrm{PQ}=$ Incident ray		
		$e=$ Angle of emergence		
		$\angle \mathrm{BAC}=$ Angle of prism		
		Consider \triangle QDR		
		$\mathrm{r}_{1}+\mathrm{r}_{2}+\llcorner\mathrm{QDR}=180$		

Subject Code: 17102
Model Answer
Page No: 14/16

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
3)	c)	Consider \square AQDR $\begin{aligned} & \llcorner\mathrm{A}+\llcorner\mathrm{QDR}=180 \\ & \qquad \mathrm{r}_{1}+\mathrm{r}_{2}+\llcorner\mathrm{QDR}=\llcorner\mathrm{A}+\llcorner\mathrm{QDR} \\ & \quad\left\llcorner\mathrm{A}=\mathrm{r}_{1}+\mathrm{r}_{2}\right. \end{aligned}$ For certain value of $L i$, angle of deviation δ is called angle of minimum deviation δ_{m}. At this stage $L i=L e$ and $r_{1}=r_{2}=r$ Therefore $\quad \mathrm{r}_{1}+\mathrm{r}_{2}=2 \mathrm{r}=\mathrm{A} \quad, \quad \mathrm{A}=\mathrm{r} / 2$ Δ QER $\quad \delta=x+y$ $\delta=\left(\mathrm{i}-\mathrm{r}_{1}\right)+\left(\mathrm{e}-\mathrm{r}_{2}\right)$ $\delta=\mathrm{i}+\mathrm{e}-\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)$ At $\boldsymbol{\delta}=\boldsymbol{\delta}$ $\mathbf{r}_{1}=\mathbf{r}_{2}=\mathbf{r}$ $\mathbf{i}=\mathbf{e}$ $\mathbf{i}=A+\delta_{\mathrm{m}} / 2$ $\mathbf{r}=\mathbf{A} / 2$ By Snell's law $\boldsymbol{\mu}=\boldsymbol{\operatorname { s i n }} \mathbf{i} / \sin \mathbf{r}$ By substituting values if i and r in above law we get, $\mu=\frac{\sin \left(\frac{A+\delta m}{2}\right)}{\sin \left(\frac{A}{2}\right)}$ Where, $\mu=$ refractive index of material of prism. A = Angle of prism. $\delta m=$ Angle of minimum deviation		

WINTER - 14 EXAMINATION
Subject Code: 17102
Model Answer
Page No: 15/16

Model Answer
Page No: 16/16

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
3)	e)	A particle performing $\mathbf{S H M}$ has period of 3 sec . Calculate its acceleration at 2 cm from mean position. Formula Substitution and Calculation Answer with unit Given: Required: $\mathrm{T}=3 \mathrm{sec}$. $\mathrm{a}=$? $\mathrm{x}=2 \mathrm{~cm}=2 \times 10^{-2} \mathrm{~m}$ $\begin{aligned} \mathrm{a} & =\omega^{2} \mathrm{x} \\ \mathrm{a} & =(2 \pi / \mathrm{T})^{2} \cdot \mathrm{x} \\ \mathrm{a} & =(2 \times 3.14 / 3)^{2} .2 \times 10^{-2} \\ \mathrm{a} & =0.087 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$ Define i) Amplitude ii) Wavelength iii) Frequency iv)Phase of particle in SHM. Each definition - Amplitude : It is defined as the maximum displacement of the particle from either side of mean position. - Wavelength : It is defined as the distance between two Consecutive Particles which are in the same state of vibration (or between two consecutive crest or trough). OR It is the distance travelled by the wave in one oscillation. - Frequency : It is defined as the number of oscillation completed in one second. - Phase of particle in SHM: It is quantity which represents the state (position, direction and displacement) of the particle at particular instant performing SHM.	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	4

