

SUMMER - 2014 EXAMINATION

Subject Code: 17102

Model Answer Basic Science (Physics)

Page No: 1/15

Que. No	Sub. Oue	Stepwise Solution	Marks	Total Marks
110.	Que.	Important Instructions to examiners:		Warks
		 The answers should be examined by key words and not as word-to-word as given in the model answer scheme. The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate. The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills). While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn. Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer. In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding. For programming language papers, credit may be given to any other program based on equivalent concept. 		

SUMMER - 2014 EXAMINATION							
Subje	ct Code	e: 17102 <u>Model Answer</u> Pa	age No: ($\frac{)2}{15}$			
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks			
1)		Attempt Any Nine		18			
	a)	State elastic body and plastic body.	1	2			
		Each definition or one example of each	1				
		Elastic body : The body which regains its original shape and size on removal of external deforming force is called elastic body. e.g. All metals – steel, brass, rubber ,copper etc.					
		Plastic body: The body which does not regains its original shape and size on removal of external deforming force and easily get deformed is called plastic body. e.g. clay ,putty ,mud , chalk etc.					
	b)	A material wire elongates by 1% of its original length when loaded. Calculate tensile strain for the wire.		2			
		Formula	1				
		Answer with unit	1				
		Given:	1				
		Let length of wire = Original length of the wire= $L = 1 m$					
		Change in length of the wire = $e = 1/100 = 0.01$ m					
		Required: Tensile strain=?					
		Tensile strain = Change in length/ Original length					
		Tensile strain = e / L					
		Tensile strain= $0.01/1$					
		Tensile strain= 0.01					

SUMMER – 2014 EXAMINATION						
ct Code	e: 17102 <u>Model Answer</u> F	age No: 03	6/15			
Sub. Que.	Stepwise Solution	Marks	Total Marks			
c)	A water tank of 10 m height is filled half. Calculate pressure at the bottom.(Take : Density of water = 10^3 kg/m ³ , g = 10 m/s ²)		2			
	Formula	1				
	Answer with unit	1				
	Given:					
	h = 10/2 = 5 m					
	$\rho = 10^3 \text{ kg} / \text{m}^3$					
	$g = 10 \text{ m/s}^2$					
	$P = h \rho g$ $P = 5x \ 10^{3} x \ 10$ $P = 50000 \ Pa$ $P = 50000 \ N/m^{2}$					
d)	State unit of velocity gradient in viscosity. unit Unit = per second = 1/ sec	2	2			
e)	What is Absolute scale of temperature? Definition	2	2			
	Absolute scale of temperature: It is the scale of temperature in which the lower fixed point is 273 ⁰ K and upper fixed point is 373 ⁰ K and it is then divided into 100 equal parts , each part is degree Kelvin or degree absolute					
	ct Code Sub. Que. c) d)	c) Model Answer Primation Sub. Stepwise Solution Primation (c) A water tank of 10 m height is filled half. Calculate pressure at the bottom. (Take : Density of water = 10 ³ kg/m ³ , g = 10 m/s ²) Formula Answer with unit Given: h = 10/2 = 5 m $p = 10^3$ kg/m ³ g = 10 m/s ² $P = h \rho g$ $P = 5x 10^3 x 10$ $P = 50000$ Pa OR OR P = 50000 N/m ² (d) State unit of velocity gradient in viscosity. unit Unit = per second = 1/ sec (c) (e) What is Absolute scale of temperature? Definition Absolute scale of temperature in which the lower fixed point is 273 ⁰ K and upper fixed point is 373 ⁰ K and it is then divided into 100 equal parts , each part is degree Kelvin or degree absolute	Construction Construction Marker (Construction) Marker (Construction) Sub. Que. A water tank of 10 m height is filled half. Calculate pressure at the bottom. (Take : Density of water = 10 ³ kg /m ³ , g = 10 m/s ²) I Formula 1 1 Answer with unit 1 Given: 1 h = 10/2 = 5 m 1 $\rho = 10^3$ kg /m ³ 1 g = 10 m/s ² 1 P = h ρ g P = 5x 10 ⁵ x 10 P = 50000 Pa 0R OR P = 50000 N/m ² d) State unit of velocity gradient in viscosity. unit 2 (c) What is Absolute scale of temperature? 2 Definition Absolute scale of temperature: It is the scale of temperature: It is the scale of temperature: It is the scale of temperature in which the lower fixed point is 273 ⁰ K and upper fixed point is 373 ⁰ K and it is then divided into 100 equal parts , each part is degree Kelvin or degree absolute .			

SUMMER - 2014 EXAMINATION Subject Code: 17102 Model Answer Page No: 04/15						
Oubje	Sub	<u>i Model Aliswei</u> Fage N	0.04/13	Total		
No.	Que.	Stepwise Solution	Marks	Marks		
1)	f)	Give one example each of Convection and Radiation process in nature. Each example i) Convection Formation of trade winds, Room ventilation system, monsoons etc. ii) Radiation Use of white clothes, Heat radiators in car, In activation of HIV etc.	1	2		
		Relevant examples may consider.				
	g)	Draw neat labeled diagram showing TIR of light.		2		
		Labeled diagram		2		
			2			
		Solution (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)				

SUMMER - 2014 EXAMINATION

Subje	pject Code: 17102 <u>Model Answer</u> I		age No: ()5/15
Que. No.	Sub. Oue.	Stepwise Solution	Marks	Total Marks
1)	h)	A ray enter water medium making an angle of 60° with the water surface .If it suffers deviation of 15° in water. Calculate refractive index of water.		2
		Formula	1	
		Answer with unit	1	
		Solution:		
		Given: $i = 30^0 r = 15^0$		
		Required: $\mu = ?$		
		$\mu = \sin i / \sin r$		
		$\mu = \sin 30 / \sin 15$		
		$\mu = 1.93$		
	i)	Define longitudinal wave. Give one example.		2
		Definition Example	1 1	
		Longitudinal wave:		
		The wave in which direction of vibration of particles of material medium is parallel to the direction of propagation of wave is called longitudinal wave.		
		Example : Sound wave		
		Relevant examples may consider		2
	j)	Wavelength of light emitted by a source is 5800 A.U. Find the frequency if c velocity of light is $3x \ 10^8$ m/s.	1	
		Formula	1	
		Answer with unit	1	

Subject Code: 17102 Model Answer Page No: 06/15						
Oubje	Sub	<u>- Model Aliswei</u>	age NO. 00	Total		
No.	Oue.	Stepwise Solution	Marks	Marks		
1)	2	Solution: Given: $\lambda = 5800 \text{ A.U.} = 5800 \text{ X } 10^{10} \text{ m}$ $c = 3 \text{ x} 10^8 \text{ m/s}$ n = ? $c = n \lambda$ $n = c / \lambda$ $n = 3 \text{ x} 10^8 / 5800 \text{ X } 10^{10}$ $n = 5.17 \text{ x } 10^{14} \text{ Hz}$				
	k)	Write formula for critical velocity for a flow of fluid through a pipe. Formula $V_c = \eta R / \rho r$	2	2		
	1)	 State use of bad conductor in heat transfer. Any one use Uses : Ice box: use of thermocole to prevent melting if ice. Handle of pressure cooker: Plastic material is used to prevent it getting heated so that we can handle it easily. Refrigerators: Plastic pipeline insulation between expansio valve outlet and evaporator to avoid thermal loss. Thermos flask: To maintain the constant temperature of the flask content it is double walled with air gap between them 	2 n	2		

Subject Code: 17102

SUMMER – 2014 EXAMINATION Model Answer

Page No: 07/15

Que.	Sub.	Stepwise Solution	Marks	Total Marks
1NO. 2)	Que.	Attempt any four of the following		Marks
_/				
	a)	Define three modulii of elasticity. Y, K and η .	4	
		Young's modulus(Y):		
		Within elastic limit the ratio of longitudinal stress to		
		OR		
		It is the ratio of tensile stress to tensile strain.		
		Bulk Modulus(K):		
		Within elastic limit the ratio of volume stress to volume		
		or or other strain is called Bulk modulus.		
		It is the ratio of volume stress to volume strain.		
		Modulus of Rigidity(η):		
		Within elastic limit the ratio of shearing stress to shearing		
		strain is called modulus of rigidity.		
		It is the ratio of shearing stress to shearing strain.		
	b)	Calculate Young's modulus of elasticity for material wire		
	0)	2m long, 0.4 mm diameter, if weight applied is 100 N		
		which elongates the wire by 0.001 mm.		
		Conversion and Formula	2	4
		Answer with Units	2	
		Given,		
		Y = ?		
		D = 2 m Dia.= 0.4 mm = 0.4 x 10 ⁻³ m.		
		Radius = $0.2 \times 10^{-3} \text{ m}.$		
		F = 100 N $1 = 0.001 \text{ mm} = 0.001 \text{ x} 10^{-3} \text{ m}$		
		1 = 0.001 mm = 0.001 x 10 m.		
		$Y = \frac{FL}{H} = \frac{FL}{H^2}$		
		Al $\pi r l^2$ 100×2		
		$Y = \frac{100 \times 2}{3.14 \times (0.2 \times 10^{-3})^2 \times 0.001 \times 10^{-3}}$		
		$Y = 159.23 \times 10^{-13}$		
		$Y = 1.59 \text{ x } 10^{11} \text{ N/m}^2.$		

Subject Code: 17102

SUMMER – 2014 EXAMINATION Model Answer

Page No: 08/15

Que.	Sub.	Stepwise Solution	Marks	Total
No.	Que.		11101110	Marks
2)	c)	State Newton's law of viscosity. Define 1 poise. State SI unit for		
		Statement	2	4
		Definition	2	4
		SI Unit	1	
		Newton's law of viscosity:	1	
		Statement: The viscous force (F) developed between two liquid		
		layers is		
		i. directly proportional to surface area of liquid layer, (A) i.e. [F α A]		
		ii. directly proportional to velocity gradient i.e. [F α (dv/dx)]		
		$F \alpha A dv/dx$		
		$F = \eta A dv/dx$		
		Where, η is the coefficient of viscosity of the liquid.		
		1 poise :- The coefficient of viscosity η is said to be 1 poise if 1 dyne viscous force is developed between two liquid layers of 1 cm ² area for unit velocity gradient.		
		SI Unit :- Ns / m ²		
	d)	A capillary tube of diameter 2 mm when dipped in an organic liquid, the liquid rises to 2 cm in it. Calculate height of rise when a capillary tube of diameter 1.5 mm is dipped in same liquid.		4
		Formula and Calculation Answer with Unit	2 2	
		Given, Dia.1 =2 mm radius $r_1 = 1$ mm. Dia.2 = 1.5 mm radius $r_2 = 0.75$ mm. $h_1 = 2$ cm. $h_2 = ?$ We have $r_1 h_1 = r_2 h_1$ $h_2 = \frac{r_1 h_1}{r_2}$ $h_2 = \frac{1 \times 2}{0.75}$ $h_2 = 2.66$ cm.		

SUMMER - 2014 EXAMINATION

Subje	ct Code	e: 17102 <u>Model Answer</u> P	age No: (09/15
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
2)	e)	Define Isothermal and Adiabatic process. Give their examples		4
		in engineering.		
		Each Definition	2	
		Each examples	2	
		Isothermal Expansion It is the expansion of gas while its temperature remains constant.		
		Adiabatic Expansion It is an expansion of gas while its temperature changes.		
		Examples Isothermal Expansion: - i) Melting of solids ii) Boiling of water. Adiabatic Expansion: - Bursting of cycle rubber tube.		
	f)	Define: i) Amplitude (a) ii) Wavelength (λ) iii) Phase angle iv) Epoch in S.H.M.		4
		Each Definition	1	
		 i) Amplitude (a):- The maximum displacement of particle from its mean position on either side is called amplitude. ii) Wavelength (λ):- The distance between two consecutive particles of the medium which are in the same phase is called wavelength. iii) Phase angle: - The angle which gives position, direction & displacement of the particle in S.H.M.at any instant is known as phase angle. iv) Epoch: - Initial phase angle or starting phase made by radius vector with the horizontal is known as epoch. 		

Subject Code: 17102

SUMMER - 2014 EXAMINATION Model Answer

Page No: 10/15

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
3)	a)	Attempt any Four. Why the free liquid assume spherical shape in nature? Explain using molecular theory of surface tension. Reason Molecular theory	1 3	16 4
		Laplace's molecular theory of surface tension		
		1. Consider three molecules A, B & C of the liquid. A sphere of influence is drawn as shown in fig.		
		2. The sphere of influence of molecule 'A' is completely inside the liquid, so it is equally attracted in all directions by the other molecules lying within its sphere. Hence the resultant force acting on it is zero.		
		3. The part of the sphere of influence of molecule 'B' lies outside the liquid & the major part lie inside the liquid. Therefore resultant force acting on it is directed downward.		
		4. For Molecule 'C' half of its sphere of influence lies inside the liquid and half lies outside the liquid. So, the maximum resultant downward force is acting on molecule'C'		
		5. Thus molecule A experiences zero resultant force, B experience downward resultant force, C experience more downward resultant force. In short molecules below imaginary line PQ experience zero resultant force and molecules about line PQ experience some or more downward resultant force.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER - 2014 EXAMINATION Model Answer

Page No: 11/15

Que.	Sub.	Stepwise Solution	Marks	Total
No.	Que.	Stepwise Solution	WIAI KS	Marks
3	a)	Thus according to Laplace's molecular theory of surface tension the molecules which lie on the surface of liquid (surface film) experience downward resultant force and are being pulled inside the liquid. To balance this downward force, molecules come closer to each other. Therefore free surface of liquid behaves like a stretched elastic membrane. This reduces the surface area of liquid. Since spherical shape is the only shape which has minimum surface area, therefore the shape of liquid drop is spherical in nature.		
	b)	State Boyle's law , Charles's law and Gay Lussac's law. What is an ideal gas? Each Law Definition Boyle's law: - For fixed mass of a gas, temperature of a gas remaining constant, its pressure is inversely proportional to its volume.	1 1	4
	c)	Charles's Law: For fixed mass of a gas, pressure of a gas remaining constant, its volume is directly proportional to its absolute temperature. Gay Lussac's Law: - For fixed mass of a gas, volume of a gas remaining constant, its pressure is directly proportional to its absolute temperature. Ideal Gas: - An ideal gas is a theoretical gas composed of a set of randomly moving and non interacting point particles. OR A gas that when kept at constant temperature obeys the gas laws exactly. Difference between specific heats for a gas is 4000 kcal/kg/ ⁰ k. Calculate the two specific heats if the ratio of principal specific heats is 1.41. Formula and calculation Answer with unit Given, $Cp - Cv = 4000 \text{ kcal/kg/}^{0}\text{k}(1) Cp / Cv = 1.41$	2 2	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2014 EXAMINATION Model Answer

Page No: 12/15

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
Que. No. 3)	Sub. Que. c)	Stepwise Solution $Cp = 1.41 Cv \qquad(2)$ Substitute value of Cp in eq.(1) we get, $1.41Cv - Cv = 4000$ $0.41Cv = 4000$ $Cv = 9756.09 \text{ kcal/kg/}^{h} \text{k}$ $Cp = 1.41 \times 9756.09$ $Cp = 13756.08 \text{ kcal/kg/}^{h} \text{k}$ Derive prism formula. Diagram with label Derivation Prism formula $N \qquad \qquad$	Marks 2 2	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2014 EXAMINATION Model Answer

Page No: 13/15

Que.	Sub.	Stepwise Solution	Marks	Total
$\frac{No.}{2}$	Que.			Marks
3)	d)	$\therefore \angle A + \angle QN R = \angle r_1 + \angle r_2 + \angle QN R$		
		$A = r_1 + r_2$		
		A = 2r		
		$\left[r = \frac{A}{2}\right] \dots \dots$		
		since		
		when $\delta = \delta m$, then i = e4)		
		and $r_1 = r_2 = r \text{ say}$ 5)		
		$In\Delta EQR, \delta$		
		$x + y = \delta_m$		
		$(i-r_1) + (e-r_2) = \delta m$		
		$i + e - r_1 - r_2 = \delta m$		
		$i + e - 2r = \delta m$		
		$i + e = \delta m + 2r$		
		$i + e = A + \delta m$		
		Put e=i from equation (4)		
		$2i = A + \delta m$		
		$i = \frac{A + \delta m}{2}$		
		L 2 J By Spoll's law		
		$\sin i$. (7) 1(0)		
		$\mu = \frac{1}{\sin r}$ using equations (5) and (3)		
		$\left[\sin \frac{A+\delta m}{\delta m} \right]$		
		$\mu = \frac{2}{\Lambda}$		
		$\sin\frac{A}{2}$		
		This is prism formula		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2014 EXAMINATION Model Answer

Page No: 14/15

Que. No	Sub.	Stepwise Solution	Marks	Total Marks
3)	e)	Define free and forced oscillations. Hence state resonance effect		4
-)	-)	giving examples.		
			1	
		Each Definition	1	
		One example	1	
		Free vibrations: The vibrations performed by a body when only once disturbed from its equilibrium position and vibrates with a natural frequency are called free oscillations/vibration.		
		Forced vibrations : When a body is continuously disturbed by a periodic force, then the particle cannot vibrate with its natural frequency but it starts vibrating with the frequency of periodic force. These vibrations are called forced oscillations/vibration		
		Resonance effect:- When the driving / forced frequency of a body exactly match with natural frequency of a body then the body vibrate with maximum amplitude, such effect is called as resonance effect.		
		Examples		
		 Bridge may collapse in earth quake if forced frequency of earth quake becomes equal to the natural frequency of the bridge. Use of musical instruments like flute, harmonium, sitar, violin, guitar. Radio receiver set. 		
		Any relevant examples may be considered.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER - 2014 EXAMINATION Model Answer

Page No: 15/15

Que.	Sub.	Stanutica Calution	Marka	Total
No.	Que.	Stepwise Solution	IVIALKS	Marks
3)	f)	Y =10 sin (2 π t + $\pi/6$) SI unit is equation of displacement for		4
		particle performing S.H.M. State amplitude, phase angle epoch		
		and period of S.H.M. particle.		
		Standard equation	1	
		Fach answer	1	
		Standard Equation		
		$Y = a \sin (\omega t + \alpha) \qquad(1)$		
		Given equation $V_{i} = 10 \text{ sin} (2 - 4 + -4)$ (2)		
		$Y = 10 \sin (2 \pi t + \pi/6) \qquad(2)$ Comparing equation (2) with equation (1) we get		
		Comparing equation (2) with equation (1) we get,		
		Amplitude (a) = 10 unit.		
		Phase angle epoch (α) = $\pi/6$		
		For period we have,		
		$\omega t = 2 \pi t$		
		$\omega = 2 \pi$ Period (T) = $2\pi/\omega$		
		Period (T) = $2\pi/3\pi$		
		Period $(T) = 1$ unit.		